/- Copyright (c) 2014 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: data.int.order Authors: Floris van Doorn, Jeremy Avigad The order relation on the integers. We show that int is an instance of linear_comm_ordered_ring and transfer the results. -/ import .basic algebra.ordered_ring open nat open decidable open fake_simplifier open int eq.ops namespace int private definition nonneg (a : ℤ) : Prop := int.cases_on a (take n, true) (take n, false) definition le (a b : ℤ) : Prop := nonneg (sub b a) definition lt (a b : ℤ) : Prop := le (add a 1) b infix - := int.sub infix <= := int.le infix ≤ := int.le infix < := int.lt local attribute nonneg [reducible] private definition decidable_nonneg [instance] (a : ℤ) : decidable (nonneg a) := int.cases_on a _ _ definition decidable_le [instance] (a b : ℤ) : decidable (a ≤ b) := decidable_nonneg _ definition decidable_lt [instance] (a b : ℤ) : decidable (a < b) := decidable_nonneg _ private theorem nonneg.elim {a : ℤ} : nonneg a → ∃n : ℕ, a = n := int.cases_on a (take n H, exists.intro n rfl) (take n' H, false.elim H) private theorem nonneg_or_nonneg_neg (a : ℤ) : nonneg a ∨ nonneg (-a) := int.cases_on a (take n, or.inl trivial) (take n, or.inr trivial) theorem le.intro {a b : ℤ} {n : ℕ} (H : a + n = b) : a ≤ b := have H1 : b - a = n, from (eq_add_neg_of_add_eq (!add.comm ▸ H))⁻¹, have H2 : nonneg n, from true.intro, show nonneg (b - a), from H1⁻¹ ▸ H2 theorem le.elim {a b : ℤ} (H : a ≤ b) : ∃n : ℕ, a + n = b := obtain (n : ℕ) (H1 : b - a = n), from nonneg.elim H, exists.intro n (!add.comm ▸ iff.mp' !add_eq_iff_eq_add_neg (H1⁻¹)) theorem le.total (a b : ℤ) : a ≤ b ∨ b ≤ a := or.elim (nonneg_or_nonneg_neg (b - a)) (assume H, or.inl H) (assume H : nonneg (-(b - a)), have H0 : -(b - a) = a - b, from neg_sub b a, have H1 : nonneg (a - b), from H0 ▸ H, -- too bad: can't do it in one step or.inr H1) theorem of_nat_le_of_nat {m n : ℕ} (H : #nat m ≤ n) : of_nat m ≤ of_nat n := obtain (k : ℕ) (Hk : m + k = n), from nat.le.elim H, le.intro (Hk ▸ of_nat_add_of_nat m k) theorem le_of_of_nat_le_of_nat {m n : ℕ} (H : of_nat m ≤ of_nat n) : (#nat m ≤ n) := obtain (k : ℕ) (Hk : of_nat m + of_nat k = of_nat n), from le.elim H, have H1 : m + k = n, from of_nat.inj ((of_nat_add_of_nat m k)⁻¹ ⬝ Hk), nat.le.intro H1 theorem of_nat_le_of_nat_iff (m n : ℕ) : of_nat m ≤ of_nat n ↔ m ≤ n := iff.intro le_of_of_nat_le_of_nat of_nat_le_of_nat theorem lt_add_succ (a : ℤ) (n : ℕ) : a < a + succ n := le.intro (show a + 1 + n = a + succ n, from calc a + 1 + n = a + (1 + n) : add.assoc ... = a + (n + 1) : nat.add.comm ... = a + succ n : rfl) theorem lt.intro {a b : ℤ} {n : ℕ} (H : a + succ n = b) : a < b := H ▸ lt_add_succ a n theorem lt.elim {a b : ℤ} (H : a < b) : ∃n : ℕ, a + succ n = b := obtain (n : ℕ) (Hn : a + 1 + n = b), from le.elim H, have H2 : a + succ n = b, from calc a + succ n = a + 1 + n : by simp ... = b : Hn, exists.intro n H2 theorem of_nat_lt_of_nat_iff (n m : ℕ) : of_nat n < of_nat m ↔ n < m := calc of_nat n < of_nat m ↔ of_nat n + 1 ≤ of_nat m : iff.refl ... ↔ of_nat (succ n) ≤ of_nat m : of_nat_succ n ▸ !iff.refl ... ↔ succ n ≤ m : of_nat_le_of_nat_iff ... ↔ n < m : iff.symm (lt_iff_succ_le _ _) theorem lt_of_of_nat_lt_of_nat {m n : ℕ} (H : of_nat m < of_nat n) : #nat m < n := iff.mp !of_nat_lt_of_nat_iff H theorem of_nat_lt_of_nat {m n : ℕ} (H : #nat m < n) : of_nat m < of_nat n := iff.mp' !of_nat_lt_of_nat_iff H /- show that the integers form an ordered additive group -/ theorem le.refl (a : ℤ) : a ≤ a := le.intro (add_zero a) theorem le.trans {a b c : ℤ} (H1 : a ≤ b) (H2 : b ≤ c) : a ≤ c := obtain (n : ℕ) (Hn : a + n = b), from le.elim H1, obtain (m : ℕ) (Hm : b + m = c), from le.elim H2, have H3 : a + of_nat (n + m) = c, from calc a + of_nat (n + m) = a + (of_nat n + m) : {(of_nat_add_of_nat n m)⁻¹} ... = a + n + m : (add.assoc a n m)⁻¹ ... = b + m : {Hn} ... = c : Hm, le.intro H3 theorem le.antisymm {a b : ℤ} (H1 : a ≤ b) (H2 : b ≤ a) : a = b := obtain (n : ℕ) (Hn : a + n = b), from le.elim H1, obtain (m : ℕ) (Hm : b + m = a), from le.elim H2, have H3 : a + of_nat (n + m) = a + 0, from calc a + of_nat (n + m) = a + (of_nat n + m) : {(of_nat_add_of_nat n m)⁻¹} ... = a + n + m : (add.assoc a n m)⁻¹ ... = b + m : {Hn} ... = a : Hm ... = a + 0 : (add_zero a)⁻¹, have H4 : of_nat (n + m) = of_nat 0, from add.left_cancel H3, have H5 : n + m = 0, from of_nat.inj H4, have H6 : n = 0, from nat.eq_zero_of_add_eq_zero_right H5, show a = b, from calc a = a + of_nat 0 : (add_zero a)⁻¹ ... = a + n : {H6⁻¹} ... = b : Hn theorem lt.irrefl (a : ℤ) : ¬ a < a := (assume H : a < a, obtain (n : ℕ) (Hn : a + succ n = a), from lt.elim H, have H2 : a + succ n = a + 0, from calc a + succ n = a : Hn ... = a + 0 : by simp, have H3 : succ n = 0, from add.left_cancel H2, have H4 : succ n = 0, from of_nat.inj H3, absurd H4 !succ_ne_zero) theorem ne_of_lt {a b : ℤ} (H : a < b) : a ≠ b := (assume H2 : a = b, absurd (H2 ▸ H) (lt.irrefl b)) theorem succ_le_of_lt {a b : ℤ} (H : a < b) : a + 1 ≤ b := H theorem lt_of_le_succ {a b : ℤ} (H : a + 1 ≤ b) : a < b := H theorem le_of_lt {a b : ℤ} (H : a < b) : a ≤ b := obtain (n : ℕ) (Hn : a + succ n = b), from lt.elim H, le.intro Hn theorem lt_iff_le_and_ne (a b : ℤ) : a < b ↔ (a ≤ b ∧ a ≠ b) := iff.intro (assume H, and.intro (le_of_lt H) (ne_of_lt H)) (assume H, have H1 : a ≤ b, from and.elim_left H, have H2 : a ≠ b, from and.elim_right H, obtain (n : ℕ) (Hn : a + n = b), from le.elim H1, have H3 : n ≠ 0, from (assume H' : n = 0, H2 (!add_zero ▸ H' ▸ Hn)), obtain (k : ℕ) (Hk : n = succ k), from nat.exists_eq_succ_of_ne_zero H3, lt.intro (Hk ▸ Hn)) theorem le_iff_lt_or_eq (a b : ℤ) : a ≤ b ↔ (a < b ∨ a = b) := iff.intro (assume H, by_cases (assume H1 : a = b, or.inr H1) (assume H1 : a ≠ b, obtain (n : ℕ) (Hn : a + n = b), from le.elim H, have H2 : n ≠ 0, from (assume H' : n = 0, H1 (!add_zero ▸ H' ▸ Hn)), obtain (k : ℕ) (Hk : n = succ k), from nat.exists_eq_succ_of_ne_zero H2, or.inl (lt.intro (Hk ▸ Hn)))) (assume H, or.elim H (assume H1, le_of_lt H1) (assume H1, H1 ▸ !le.refl)) theorem lt_succ (a : ℤ) : a < a + 1 := le.refl (a + 1) theorem add_le_add_left {a b : ℤ} (H : a ≤ b) (c : ℤ) : c + a ≤ c + b := obtain (n : ℕ) (Hn : a + n = b), from le.elim H, have H2 : c + a + n = c + b, from calc c + a + n = c + (a + n) : add.assoc c a n ... = c + b : {Hn}, le.intro H2 theorem mul_nonneg {a b : ℤ} (Ha : 0 ≤ a) (Hb : 0 ≤ b) : 0 ≤ a * b := obtain (n : ℕ) (Hn : 0 + n = a), from le.elim Ha, obtain (m : ℕ) (Hm : 0 + m = b), from le.elim Hb, le.intro (eq.symm (calc a * b = (0 + n) * b : Hn ... = n * b : nat.zero_add ... = n * (0 + m) : {Hm⁻¹} ... = n * m : nat.zero_add ... = 0 + n * m : zero_add)) theorem mul_pos {a b : ℤ} (Ha : 0 < a) (Hb : 0 < b) : 0 < a * b := obtain (n : ℕ) (Hn : 0 + succ n = a), from lt.elim Ha, obtain (m : ℕ) (Hm : 0 + succ m = b), from lt.elim Hb, lt.intro (eq.symm (calc a * b = (0 + succ n) * b : Hn ... = succ n * b : nat.zero_add ... = succ n * (0 + succ m) : {Hm⁻¹} ... = succ n * succ m : nat.zero_add ... = of_nat (succ n * succ m) : of_nat_mul_of_nat ... = of_nat (succ n * m + succ n) : nat.mul_succ ... = of_nat (succ (succ n * m + n)) : nat.add_succ ... = 0 + succ (succ n * m + n) : zero_add)) section open [classes] algebra protected definition linear_ordered_comm_ring [instance] [reducible] : algebra.linear_ordered_comm_ring int := ⦃algebra.linear_ordered_comm_ring, int.integral_domain, le := le, le_refl := le.refl, le_trans := @le.trans, le_antisymm := @le.antisymm, lt := lt, lt_iff_le_ne := lt_iff_le_and_ne, add_le_add_left := @add_le_add_left, mul_nonneg := @mul_nonneg, mul_pos := @mul_pos, le_iff_lt_or_eq := le_iff_lt_or_eq, le_total := le.total⦄ protected definition decidable_linear_ordered_comm_ring [instance] [reducible] : algebra.decidable_linear_ordered_comm_ring int := ⦃algebra.decidable_linear_ordered_comm_ring, int.linear_ordered_comm_ring, decidable_lt := decidable_lt⦄ end /- instantiate ordered ring theorems to int -/ section port_algebra definition ge [reducible] (a b : ℤ) := algebra.has_le.ge a b definition gt [reducible] (a b : ℤ) := algebra.has_lt.gt a b infix >= := int.ge infix ≥ := int.ge infix > := int.gt definition decidable_ge [instance] (a b : ℤ) : decidable (a ≥ b) := show decidable (b ≤ a), from _ definition decidable_gt [instance] (a b : ℤ) : decidable (a > b) := show decidable (b < a), from _ theorem le_of_eq_of_le : ∀{a b c : ℤ}, a = b → b ≤ c → a ≤ c := @algebra.le_of_eq_of_le _ _ theorem le_of_le_of_eq : ∀{a b c : ℤ}, a ≤ b → b = c → a ≤ c := @algebra.le_of_le_of_eq _ _ theorem lt_of_eq_of_lt : ∀{a b c : ℤ}, a = b → b < c → a < c := @algebra.lt_of_eq_of_lt _ _ theorem lt_of_lt_of_eq : ∀{a b c : ℤ}, a < b → b = c → a < c := @algebra.lt_of_lt_of_eq _ _ calc_trans int.le_of_eq_of_le calc_trans int.le_of_le_of_eq calc_trans int.lt_of_eq_of_lt calc_trans int.lt_of_lt_of_eq theorem ge_of_eq_of_ge : ∀{a b c : ℤ}, a = b → b ≥ c → a ≥ c := @algebra.ge_of_eq_of_ge _ _ theorem ge_of_ge_of_eq : ∀{a b c : ℤ}, a ≥ b → b = c → a ≥ c := @algebra.ge_of_ge_of_eq _ _ theorem gt_of_eq_of_gt : ∀{a b c : ℤ}, a = b → b > c → a > c := @algebra.gt_of_eq_of_gt _ _ theorem gt_of_gt_of_eq : ∀{a b c : ℤ}, a > b → b = c → a > c := @algebra.gt_of_gt_of_eq _ _ theorem ge.trans: ∀{a b c : ℤ}, a ≥ b → b ≥ c → a ≥ c := @algebra.ge.trans _ _ theorem gt.trans: ∀{a b c : ℤ}, a ≥ b → b ≥ c → a ≥ c := @algebra.ge.trans _ _ theorem gt_of_gt_of_ge : ∀{a b c : ℤ}, a > b → b ≥ c → a > c := @algebra.gt_of_gt_of_ge _ _ theorem gt_of_ge_of_gt : ∀{a b c : ℤ}, a ≥ b → b > c → a > c := @algebra.gt_of_ge_of_gt _ _ calc_trans int.ge_of_eq_of_ge calc_trans int.ge_of_ge_of_eq calc_trans int.gt_of_eq_of_gt calc_trans int.gt_of_gt_of_eq theorem lt.asymm : ∀{a b : ℤ}, a < b → ¬ b < a := @algebra.lt.asymm _ _ theorem lt_of_le_of_ne : ∀{a b : ℤ}, a ≤ b → a ≠ b → a < b := @algebra.lt_of_le_of_ne _ _ theorem lt_of_lt_of_le : ∀{a b c : ℤ}, a < b → b ≤ c → a < c := @algebra.lt_of_lt_of_le _ _ theorem lt_of_le_of_lt : ∀{a b c : ℤ}, a ≤ b → b < c → a < c := @algebra.lt_of_le_of_lt _ _ theorem not_le_of_lt : ∀{a b : ℤ}, a < b → ¬ b ≤ a := @algebra.not_le_of_lt _ _ theorem not_lt_of_le : ∀{a b : ℤ}, a ≤ b → ¬ b < a := @algebra.not_lt_of_le _ _ theorem lt_or_eq_of_le : ∀{a b : ℤ}, a ≤ b → a < b ∨ a = b := @algebra.lt_or_eq_of_le _ _ theorem lt.trichotomy : ∀a b : ℤ, a < b ∨ a = b ∨ b < a := algebra.lt.trichotomy theorem lt.by_cases : ∀{a b : ℤ} {P : Prop}, (a < b → P) → (a = b → P) → (b < a → P) → P := @algebra.lt.by_cases _ _ theorem le_of_not_lt : ∀{a b : ℤ}, ¬ a < b → b ≤ a := @algebra.le_of_not_lt _ _ theorem lt_of_not_le : ∀{a b : ℤ}, ¬ a ≤ b → b < a := @algebra.lt_of_not_le _ _ theorem lt_or_ge : ∀a b : ℤ, a < b ∨ a ≥ b := @algebra.lt_or_ge _ _ theorem le_or_gt : ∀a b : ℤ, a ≤ b ∨ a > b := @algebra.le_or_gt _ _ theorem lt_or_gt_of_ne : ∀{a b : ℤ}, a ≠ b → a < b ∨ a > b := @algebra.lt_or_gt_of_ne _ _ theorem add_le_add_right : ∀{a b : ℤ}, a ≤ b → ∀c : ℤ, a + c ≤ b + c := @algebra.add_le_add_right _ _ theorem add_le_add : ∀{a b c d : ℤ}, a ≤ b → c ≤ d → a + c ≤ b + d := @algebra.add_le_add _ _ theorem add_lt_add_left : ∀{a b : ℤ}, a < b → ∀c : ℤ, c + a < c + b := @algebra.add_lt_add_left _ _ theorem add_lt_add_right : ∀{a b : ℤ}, a < b → ∀c : ℤ, a + c < b + c := @algebra.add_lt_add_right _ _ theorem le_add_of_nonneg_right : ∀{a b : ℤ}, b ≥ 0 → a ≤ a + b := @algebra.le_add_of_nonneg_right _ _ theorem le_add_of_nonneg_left : ∀{a b : ℤ}, b ≥ 0 → a ≤ b + a := @algebra.le_add_of_nonneg_left _ _ theorem add_lt_add : ∀{a b c d : ℤ}, a < b → c < d → a + c < b + d := @algebra.add_lt_add _ _ theorem add_lt_add_of_le_of_lt : ∀{a b c d : ℤ}, a ≤ b → c < d → a + c < b + d := @algebra.add_lt_add_of_le_of_lt _ _ theorem add_lt_add_of_lt_of_le : ∀{a b c d : ℤ}, a < b → c ≤ d → a + c < b + d := @algebra.add_lt_add_of_lt_of_le _ _ theorem lt_add_of_pos_right : ∀{a b : ℤ}, b > 0 → a < a + b := @algebra.lt_add_of_pos_right _ _ theorem lt_add_of_pos_left : ∀{a b : ℤ}, b > 0 → a < b + a := @algebra.lt_add_of_pos_left _ _ theorem le_of_add_le_add_left : ∀{a b c : ℤ}, a + b ≤ a + c → b ≤ c := @algebra.le_of_add_le_add_left _ _ theorem le_of_add_le_add_right : ∀{a b c : ℤ}, a + b ≤ c + b → a ≤ c := @algebra.le_of_add_le_add_right _ _ theorem lt_of_add_lt_add_left : ∀{a b c : ℤ}, a + b < a + c → b < c := @algebra.lt_of_add_lt_add_left _ _ theorem lt_of_add_lt_add_right : ∀{a b c : ℤ}, a + b < c + b → a < c := @algebra.lt_of_add_lt_add_right _ _ theorem add_le_add_left_iff : ∀a b c : ℤ, a + b ≤ a + c ↔ b ≤ c := algebra.add_le_add_left_iff theorem add_le_add_right_iff : ∀a b c : ℤ, a + b ≤ c + b ↔ a ≤ c := algebra.add_le_add_right_iff theorem add_lt_add_left_iff : ∀a b c : ℤ, a + b < a + c ↔ b < c := algebra.add_lt_add_left_iff theorem add_lt_add_right_iff : ∀a b c : ℤ, a + b < c + b ↔ a < c := algebra.add_lt_add_right_iff theorem add_nonneg : ∀{a b : ℤ}, 0 ≤ a → 0 ≤ b → 0 ≤ a + b := @algebra.add_nonneg _ _ theorem add_pos : ∀{a b : ℤ}, 0 < a → 0 < b → 0 < a + b := @algebra.add_pos _ _ theorem add_pos_of_pos_of_nonneg : ∀{a b : ℤ}, 0 < a → 0 ≤ b → 0 < a + b := @algebra.add_pos_of_pos_of_nonneg _ _ theorem add_pos_of_nonneg_of_pos : ∀{a b : ℤ}, 0 ≤ a → 0 < b → 0 < a + b := @algebra.add_pos_of_nonneg_of_pos _ _ theorem add_nonpos : ∀{a b : ℤ}, a ≤ 0 → b ≤ 0 → a + b ≤ 0 := @algebra.add_nonpos _ _ theorem add_neg : ∀{a b : ℤ}, a < 0 → b < 0 → a + b < 0 := @algebra.add_neg _ _ theorem add_neg_of_neg_of_nonpos : ∀{a b : ℤ}, a < 0 → b ≤ 0 → a + b < 0 := @algebra.add_neg_of_neg_of_nonpos _ _ theorem add_neg_of_nonpos_of_neg : ∀{a b : ℤ}, a ≤ 0 → b < 0 → a + b < 0 := @algebra.add_neg_of_nonpos_of_neg _ _ theorem add_eq_zero_iff_eq_zero_and_eq_zero_of_nonneg_of_nonneg : ∀{a b : ℤ}, 0 ≤ a → 0 ≤ b → a + b = 0 ↔ a = 0 ∧ b = 0 := @algebra.add_eq_zero_iff_eq_zero_and_eq_zero_of_nonneg_of_nonneg _ _ theorem le_add_of_nonneg_of_le : ∀{a b c : ℤ}, 0 ≤ a → b ≤ c → b ≤ a + c := @algebra.le_add_of_nonneg_of_le _ _ theorem le_add_of_le_of_nonneg : ∀{a b c : ℤ}, b ≤ c → 0 ≤ a → b ≤ c + a := @algebra.le_add_of_le_of_nonneg _ _ theorem lt_add_of_pos_of_le : ∀{a b c : ℤ}, 0 < a → b ≤ c → b < a + c := @algebra.lt_add_of_pos_of_le _ _ theorem lt_add_of_le_of_pos : ∀{a b c : ℤ}, b ≤ c → 0 < a → b < c + a := @algebra.lt_add_of_le_of_pos _ _ theorem add_le_of_nonpos_of_le : ∀{a b c : ℤ}, a ≤ 0 → b ≤ c → a + b ≤ c := @algebra.add_le_of_nonpos_of_le _ _ theorem add_le_of_le_of_nonpos : ∀{a b c : ℤ}, b ≤ c → a ≤ 0 → b + a ≤ c := @algebra.add_le_of_le_of_nonpos _ _ theorem add_lt_of_neg_of_le : ∀{a b c : ℤ}, a < 0 → b ≤ c → a + b < c := @algebra.add_lt_of_neg_of_le _ _ theorem add_lt_of_le_of_neg : ∀{a b c : ℤ}, b ≤ c → a < 0 → b + a < c := @algebra.add_lt_of_le_of_neg _ _ theorem lt_add_of_nonneg_of_lt : ∀{a b c : ℤ}, 0 ≤ a → b < c → b < a + c := @algebra.lt_add_of_nonneg_of_lt _ _ theorem lt_add_of_lt_of_nonneg : ∀{a b c : ℤ}, b < c → 0 ≤ a → b < c + a := @algebra.lt_add_of_lt_of_nonneg _ _ theorem lt_add_of_pos_of_lt : ∀{a b c : ℤ}, 0 < a → b < c → b < a + c := @algebra.lt_add_of_pos_of_lt _ _ theorem lt_add_of_lt_of_pos : ∀{a b c : ℤ}, b < c → 0 < a → b < c + a := @algebra.lt_add_of_lt_of_pos _ _ theorem add_lt_of_nonpos_of_lt : ∀{a b c : ℤ}, a ≤ 0 → b < c → a + b < c := @algebra.add_lt_of_nonpos_of_lt _ _ theorem add_lt_of_lt_of_nonpos : ∀{a b c : ℤ}, b < c → a ≤ 0 → b + a < c := @algebra.add_lt_of_lt_of_nonpos _ _ theorem add_lt_of_neg_of_lt : ∀{a b c : ℤ}, a < 0 → b < c → a + b < c := @algebra.add_lt_of_neg_of_lt _ _ theorem add_lt_of_lt_of_neg : ∀{a b c : ℤ}, b < c → a < 0 → b + a < c := @algebra.add_lt_of_lt_of_neg _ _ theorem neg_le_neg : ∀{a b : ℤ}, a ≤ b → -b ≤ -a := @algebra.neg_le_neg _ _ theorem le_of_neg_le_neg : ∀{a b : ℤ}, -b ≤ -a → a ≤ b := @algebra.le_of_neg_le_neg _ _ theorem neg_le_neg_iff_le : ∀a b : ℤ, -a ≤ -b ↔ b ≤ a := algebra.neg_le_neg_iff_le theorem nonneg_of_neg_nonpos : ∀{a : ℤ}, -a ≤ 0 → 0 ≤ a := @algebra.nonneg_of_neg_nonpos _ _ theorem neg_nonpos_of_nonneg : ∀{a : ℤ}, 0 ≤ a → -a ≤ 0 := @algebra.neg_nonpos_of_nonneg _ _ theorem neg_nonpos_iff_nonneg : ∀a : ℤ, -a ≤ 0 ↔ 0 ≤ a := algebra.neg_nonpos_iff_nonneg theorem nonpos_of_neg_nonneg : ∀{a : ℤ}, 0 ≤ -a → a ≤ 0 := @algebra.nonpos_of_neg_nonneg _ _ theorem neg_nonneg_of_nonpos : ∀{a : ℤ}, a ≤ 0 → 0 ≤ -a := @algebra.neg_nonneg_of_nonpos _ _ theorem neg_nonneg_iff_nonpos : ∀a : ℤ, 0 ≤ -a ↔ a ≤ 0 := algebra.neg_nonneg_iff_nonpos theorem neg_lt_neg : ∀{a b : ℤ}, a < b → -b < -a := @algebra.neg_lt_neg _ _ theorem lt_of_neg_lt_neg : ∀{a b : ℤ}, -b < -a → a < b := @algebra.lt_of_neg_lt_neg _ _ theorem neg_lt_neg_iff_lt : ∀a b : ℤ, -a < -b ↔ b < a := algebra.neg_lt_neg_iff_lt theorem pos_of_neg_neg : ∀{a : ℤ}, -a < 0 → 0 < a := @algebra.pos_of_neg_neg _ _ theorem neg_neg_of_pos : ∀{a : ℤ}, 0 < a → -a < 0 := @algebra.neg_neg_of_pos _ _ theorem neg_neg_iff_pos : ∀a : ℤ, -a < 0 ↔ 0 < a := algebra.neg_neg_iff_pos theorem neg_of_neg_pos : ∀{a : ℤ}, 0 < -a → a < 0 := @algebra.neg_of_neg_pos _ _ theorem neg_pos_of_neg : ∀{a : ℤ}, a < 0 → 0 < -a := @algebra.neg_pos_of_neg _ _ theorem neg_pos_iff_neg : ∀a : ℤ, 0 < -a ↔ a < 0 := algebra.neg_pos_iff_neg theorem le_neg_iff_le_neg : ∀a b : ℤ, a ≤ -b ↔ b ≤ -a := algebra.le_neg_iff_le_neg theorem neg_le_iff_neg_le : ∀a b : ℤ, -a ≤ b ↔ -b ≤ a := algebra.neg_le_iff_neg_le theorem lt_neg_iff_lt_neg : ∀a b : ℤ, a < -b ↔ b < -a := algebra.lt_neg_iff_lt_neg theorem neg_lt_iff_neg_lt : ∀a b : ℤ, -a < b ↔ -b < a := algebra.neg_lt_iff_neg_lt theorem sub_nonneg_iff_le : ∀a b : ℤ, 0 ≤ a - b ↔ b ≤ a := algebra.sub_nonneg_iff_le theorem sub_nonpos_iff_le : ∀a b : ℤ, a - b ≤ 0 ↔ a ≤ b := algebra.sub_nonpos_iff_le theorem sub_pos_iff_lt : ∀a b : ℤ, 0 < a - b ↔ b < a := algebra.sub_pos_iff_lt theorem sub_neg_iff_lt : ∀a b : ℤ, a - b < 0 ↔ a < b := algebra.sub_neg_iff_lt theorem add_le_iff_le_neg_add : ∀a b c : ℤ, a + b ≤ c ↔ b ≤ -a + c := algebra.add_le_iff_le_neg_add theorem add_le_iff_le_sub_left : ∀a b c : ℤ, a + b ≤ c ↔ b ≤ c - a := algebra.add_le_iff_le_sub_left theorem add_le_iff_le_sub_right : ∀a b c : ℤ, a + b ≤ c ↔ a ≤ c - b := algebra.add_le_iff_le_sub_right theorem le_add_iff_neg_add_le : ∀a b c : ℤ, a ≤ b + c ↔ -b + a ≤ c := algebra.le_add_iff_neg_add_le theorem le_add_iff_sub_left_le : ∀a b c : ℤ, a ≤ b + c ↔ a - b ≤ c := algebra.le_add_iff_sub_left_le theorem le_add_iff_sub_right_le : ∀a b c : ℤ, a ≤ b + c ↔ a - c ≤ b := algebra.le_add_iff_sub_right_le theorem add_lt_iff_lt_neg_add_left : ∀a b c : ℤ, a + b < c ↔ b < -a + c := algebra.add_lt_iff_lt_neg_add_left theorem add_lt_iff_lt_neg_add_right : ∀a b c : ℤ, a + b < c ↔ a < -b + c := algebra.add_lt_iff_lt_neg_add_right theorem add_lt_iff_lt_sub_left : ∀a b c : ℤ, a + b < c ↔ b < c - a := algebra.add_lt_iff_lt_sub_left theorem add_lt_add_iff_lt_sub_right : ∀a b c : ℤ, a + b < c ↔ a < c - b := algebra.add_lt_add_iff_lt_sub_right theorem lt_add_iff_neg_add_lt_left : ∀a b c : ℤ, a < b + c ↔ -b + a < c := algebra.lt_add_iff_neg_add_lt_left theorem lt_add_iff_neg_add_lt_right : ∀a b c : ℤ, a < b + c ↔ -c + a < b := algebra.lt_add_iff_neg_add_lt_right theorem lt_add_iff_sub_lt_left : ∀a b c : ℤ, a < b + c ↔ a - b < c := algebra.lt_add_iff_sub_lt_left theorem lt_add_iff_sub_lt_right : ∀a b c : ℤ, a < b + c ↔ a - c < b := algebra.lt_add_iff_sub_lt_right theorem le_iff_le_of_sub_eq_sub : ∀{a b c d : ℤ}, a - b = c - d → a ≤ b ↔ c ≤ d := @algebra.le_iff_le_of_sub_eq_sub _ _ theorem lt_iff_lt_of_sub_eq_sub : ∀{a b c d : ℤ}, a - b = c - d → a < b ↔ c < d := @algebra.lt_iff_lt_of_sub_eq_sub _ _ theorem sub_le_sub_left : ∀{a b : ℤ}, a ≤ b → ∀c : ℤ, c - b ≤ c - a := @algebra.sub_le_sub_left _ _ theorem sub_le_sub_right : ∀{a b : ℤ}, a ≤ b → ∀c : ℤ, a - c ≤ b - c := @algebra.sub_le_sub_right _ _ theorem sub_le_sub : ∀{a b c d : ℤ}, a ≤ b → c ≤ d → a - d ≤ b - c := @algebra.sub_le_sub _ _ theorem sub_lt_sub_left : ∀{a b : ℤ}, a < b → ∀c : ℤ, c - b < c - a := @algebra.sub_lt_sub_left _ _ theorem sub_lt_sub_right : ∀{a b : ℤ}, a < b → ∀c : ℤ, a - c < b - c := @algebra.sub_lt_sub_right _ _ theorem sub_lt_sub : ∀{a b c d : ℤ}, a < b → c < d → a - d < b - c := @algebra.sub_lt_sub _ _ theorem sub_lt_sub_of_le_of_lt : ∀{a b c d : ℤ}, a ≤ b → c < d → a - d < b - c := @algebra.sub_lt_sub_of_le_of_lt _ _ theorem sub_lt_sub_of_lt_of_le : ∀{a b c d : ℤ}, a < b → c ≤ d → a - d < b - c := @algebra.sub_lt_sub_of_lt_of_le _ _ theorem sub_le_self : ∀(a : ℤ) {b : ℤ}, b ≥ 0 → a - b ≤ a := algebra.sub_le_self theorem sub_lt_self : ∀(a : ℤ) {b : ℤ}, b > 0 → a - b < a := algebra.sub_lt_self theorem eq_zero_of_neg_eq : ∀{a : ℤ}, -a = a → a = 0 := @algebra.eq_zero_of_neg_eq _ _ definition abs : ℤ → ℤ := algebra.abs theorem abs_of_nonneg : ∀{a : ℤ}, a ≥ 0 → abs a = a := @algebra.abs_of_nonneg _ _ theorem abs_of_pos : ∀{a : ℤ}, a > 0 → abs a = a := @algebra.abs_of_pos _ _ theorem abs_of_neg : ∀{a : ℤ}, a < 0 → abs a = -a := @algebra.abs_of_neg _ _ theorem abs_zero : abs 0 = 0 := algebra.abs_zero theorem abs_of_nonpos : ∀{a : ℤ}, a ≤ 0 → abs a = -a := @algebra.abs_of_nonpos _ _ theorem abs_neg : ∀a : ℤ, abs (-a) = abs a := algebra.abs_neg theorem abs_nonneg : ∀a : ℤ, abs a ≥ 0 := algebra.abs_nonneg theorem abs_abs : ∀a : ℤ, abs (abs a) = abs a := algebra.abs_abs theorem le_abs_self : ∀a : ℤ, a ≤ abs a := algebra.le_abs_self theorem neg_le_abs_self : ∀a : ℤ, -a ≤ abs a := algebra.neg_le_abs_self theorem eq_zero_of_abs_eq_zero : ∀{a : ℤ}, abs a = 0 → a = 0 := @algebra.eq_zero_of_abs_eq_zero _ _ theorem abs_eq_zero_iff_eq_zero : ∀a : ℤ, abs a = 0 ↔ a = 0 := algebra.abs_eq_zero_iff_eq_zero theorem abs_pos_of_pos : ∀{a : ℤ}, a > 0 → abs a > 0 := @algebra.abs_pos_of_pos _ _ theorem abs_pos_of_neg : ∀{a : ℤ}, a < 0 → abs a > 0 := @algebra.abs_pos_of_neg _ _ theorem abs_pos_of_ne_zero : ∀{a : ℤ}, a ≠ 0 → abs a > 0 := @algebra.abs_pos_of_ne_zero _ _ theorem abs_sub : ∀a b : ℤ, abs (a - b) = abs (b - a) := algebra.abs_sub theorem abs.by_cases : ∀{P : ℤ → Prop}, ∀{a : ℤ}, P a → P (-a) → P (abs a) := @algebra.abs.by_cases _ _ theorem abs_le_of_le_of_neg_le : ∀{a b : ℤ}, a ≤ b → -a ≤ b → abs a ≤ b := @algebra.abs_le_of_le_of_neg_le _ _ theorem abs_lt_of_lt_of_neg_lt : ∀{a b : ℤ}, a < b → -a < b → abs a < b := @algebra.abs_lt_of_lt_of_neg_lt _ _ theorem abs_add_le_abs_add_abs : ∀a b : ℤ, abs (a + b) ≤ abs a + abs b := algebra.abs_add_le_abs_add_abs theorem abs_sub_abs_le_abs_sub : ∀a b : ℤ, abs a - abs b ≤ abs (a - b) := algebra.abs_sub_abs_le_abs_sub theorem mul_le_mul_of_nonneg_left : ∀{a b c : ℤ}, a ≤ b → 0 ≤ c → c * a ≤ c * b := @algebra.mul_le_mul_of_nonneg_left _ _ theorem mul_le_mul_of_nonneg_right : ∀{a b c : ℤ}, a ≤ b → 0 ≤ c → a * c ≤ b * c := @algebra.mul_le_mul_of_nonneg_right _ _ theorem mul_le_mul : ∀{a b c d : ℤ}, a ≤ c → b ≤ d → 0 ≤ b → 0 ≤ c → a * b ≤ c * d := @algebra.mul_le_mul _ _ theorem mul_nonpos_of_nonneg_of_nonpos : ∀{a b : ℤ}, a ≥ 0 → b ≤ 0 → a * b ≤ 0 := @algebra.mul_nonpos_of_nonneg_of_nonpos _ _ theorem mul_nonpos_of_nonpos_of_nonneg : ∀{a b : ℤ}, a ≤ 0 → b ≥ 0 → a * b ≤ 0 := @algebra.mul_nonpos_of_nonpos_of_nonneg _ _ theorem mul_lt_mul_of_pos_left : ∀{a b c : ℤ}, a < b → 0 < c → c * a < c * b := @algebra.mul_lt_mul_of_pos_left _ _ theorem mul_lt_mul_of_pos_right : ∀{a b c : ℤ}, a < b → 0 < c → a * c < b * c := @algebra.mul_lt_mul_of_pos_right _ _ theorem mul_lt_mul : ∀{a b c d : ℤ}, a < c → b ≤ d → 0 < b → 0 ≤ c → a * b < c * d := @algebra.mul_lt_mul _ _ theorem mul_neg_of_pos_of_neg : ∀{a b : ℤ}, a > 0 → b < 0 → a * b < 0 := @algebra.mul_neg_of_pos_of_neg _ _ theorem mul_neg_of_neg_of_pos : ∀{a b : ℤ}, a < 0 → b > 0 → a * b < 0 := @algebra.mul_neg_of_neg_of_pos _ _ theorem lt_of_mul_lt_mul_left : ∀{a b c : ℤ}, c * a < c * b → c ≥ 0 → a < b := @algebra.lt_of_mul_lt_mul_left _ _ theorem lt_of_mul_lt_mul_right : ∀{a b c : ℤ}, a * c < b * c → c ≥ 0 → a < b := @algebra.lt_of_mul_lt_mul_right _ _ theorem le_of_mul_le_mul_left : ∀{a b c : ℤ}, c * a ≤ c * b → c > 0 → a ≤ b := @algebra.le_of_mul_le_mul_left _ _ theorem le_of_mul_le_mul_right : ∀{a b c : ℤ}, a * c ≤ b * c → c > 0 → a ≤ b := @algebra.le_of_mul_le_mul_right _ _ theorem pos_of_mul_pos_left : ∀{a b : ℤ}, 0 < a * b → 0 ≤ a → 0 < b := @algebra.pos_of_mul_pos_left _ _ theorem pos_of_mul_pos_right : ∀{a b : ℤ}, 0 < a * b → 0 ≤ b → 0 < a := @algebra.pos_of_mul_pos_right _ _ theorem mul_le_mul_of_nonpos_left : ∀{a b c : ℤ}, b ≤ a → c ≤ 0 → c * a ≤ c * b := @algebra.mul_le_mul_of_nonpos_left _ _ theorem mul_le_mul_of_nonpos_right : ∀{a b c : ℤ}, b ≤ a → c ≤ 0 → a * c ≤ b * c := @algebra.mul_le_mul_of_nonpos_right _ _ theorem mul_nonneg_of_nonpos_of_nonpos : ∀{a b : ℤ}, a ≤ 0 → b ≤ 0 → 0 ≤ a * b := @algebra.mul_nonneg_of_nonpos_of_nonpos _ _ theorem mul_lt_mul_of_neg_left : ∀{a b c : ℤ}, b < a → c < 0 → c * a < c * b := @algebra.mul_lt_mul_of_neg_left _ _ theorem mul_lt_mul_of_neg_right : ∀{a b c : ℤ}, b < a → c < 0 → a * c < b * c := @algebra.mul_lt_mul_of_neg_right _ _ theorem mul_pos_of_neg_of_neg : ∀{a b : ℤ}, a < 0 → b < 0 → 0 < a * b := @algebra.mul_pos_of_neg_of_neg _ _ theorem mul_self_nonneg : ∀a : ℤ, a * a ≥ 0 := algebra.mul_self_nonneg theorem zero_le_one : #int 0 ≤ 1 := trivial theorem zero_lt_one : #int 0 < 1 := trivial theorem pos_and_pos_or_neg_and_neg_of_mul_pos : ∀{a b : ℤ}, a * b > 0 → (a > 0 ∧ b > 0) ∨ (a < 0 ∧ b < 0) := @algebra.pos_and_pos_or_neg_and_neg_of_mul_pos _ _ definition sign : ∀a : ℤ, ℤ := algebra.sign theorem sign_of_neg : ∀{a : ℤ}, a < 0 → sign a = -1 := @algebra.sign_of_neg _ _ theorem sign_zero : sign 0 = 0 := algebra.sign_zero theorem sign_of_pos : ∀{a : ℤ}, a > 0 → sign a = 1 := @algebra.sign_of_pos _ _ theorem sign_one : sign 1 = 1 := algebra.sign_one theorem sign_neg_one : sign (-1) = -1 := algebra.sign_neg_one theorem sign_sign : ∀a : ℤ, sign (sign a) = sign a := algebra.sign_sign theorem pos_of_sign_eq_one : ∀{a : ℤ}, sign a = 1 → a > 0 := @algebra.pos_of_sign_eq_one _ _ theorem eq_zero_of_sign_eq_zero : ∀{a : ℤ}, sign a = 0 → a = 0 := @algebra.eq_zero_of_sign_eq_zero _ _ theorem neg_of_sign_eq_neg_one : ∀{a : ℤ}, sign a = -1 → a < 0 := @algebra.neg_of_sign_eq_neg_one _ _ theorem sign_neg : ∀a : ℤ, sign (-a) = -(sign a) := algebra.sign_neg theorem sign_mul : ∀a b : ℤ, sign (a * b) = sign a * sign b := algebra.sign_mul theorem abs_eq_sign_mul : ∀a : ℤ, abs a = sign a * a := algebra.abs_eq_sign_mul theorem eq_sign_mul_abs : ∀a : ℤ, a = sign a * abs a := algebra.eq_sign_mul_abs theorem abs_dvd_iff_dvd : ∀a b : ℤ, (abs a | b) ↔ (a | b) := algebra.abs_dvd_iff_dvd theorem dvd_abs_iff : ∀a b : ℤ, (a | abs b) ↔ (a | b) := algebra.dvd_abs_iff theorem abs_mul : ∀a b : ℤ, abs (a * b) = abs a * abs b := algebra.abs_mul theorem abs_mul_self : ∀a : ℤ, abs a * abs a = a * a := algebra.abs_mul_self end port_algebra /- more facts specific to int -/ theorem nonneg_of_nat (n : ℕ) : 0 ≤ of_nat n := trivial theorem exists_eq_of_nat {a : ℤ} (H : 0 ≤ a) : ∃n : ℕ, a = of_nat n := obtain (n : ℕ) (H1 : 0 + of_nat n = a), from le.elim H, exists.intro n (!zero_add ▸ (H1⁻¹)) theorem exists_eq_neg_of_nat {a : ℤ} (H : a ≤ 0) : ∃n : ℕ, a = -(of_nat n) := have H2 : -a ≥ 0, from iff.mp' !neg_nonneg_iff_nonpos H, obtain (n : ℕ) (Hn : -a = of_nat n), from exists_eq_of_nat H2, exists.intro n (eq_neg_of_eq_neg (Hn⁻¹)) theorem of_nat_nat_abs_of_nonneg {a : ℤ} (H : a ≥ 0) : of_nat (nat_abs a) = a := obtain (n : ℕ) (Hn : a = of_nat n), from exists_eq_of_nat H, Hn⁻¹ ▸ congr_arg of_nat (nat_abs_of_nat n) theorem of_nat_nat_abs_of_nonpos {a : ℤ} (H : a ≤ 0) : of_nat (nat_abs a) = -a := have H1 : (-a) ≥ 0, from iff.mp' !neg_nonneg_iff_nonpos H, calc of_nat (nat_abs a) = of_nat (nat_abs (-a)) : nat_abs_neg ... = -a : of_nat_nat_abs_of_nonneg H1 theorem of_nat_nat_abs (b : ℤ) : nat_abs b = abs b := or.elim (le.total 0 b) (assume H : b ≥ 0, of_nat_nat_abs_of_nonneg H ⬝ (abs_of_nonneg H)⁻¹) (assume H : b ≤ 0, of_nat_nat_abs_of_nonpos H ⬝ (abs_of_nonpos H)⁻¹) theorem lt_of_add_one_le {a b : ℤ} (H : a + 1 ≤ b) : a < b := obtain n (H1 : a + 1 + n = b), from le.elim H, have H2 : a + succ n = b, by rewrite [-H1, add.assoc, (add.comm 1)], lt.intro H2 theorem add_one_le_of_lt {a b : ℤ} (H : a < b) : a + 1 ≤ b := obtain n (H1 : a + succ n = b), from lt.elim H, have H2 : a + 1 + n = b, by rewrite [-H1, add.assoc, (add.comm 1)], le.intro H2 theorem of_nat_nonneg (n : ℕ) : of_nat n ≥ 0 := trivial theorem of_nat_pos {n : ℕ} (Hpos : #nat n > 0) : of_nat n > 0 := of_nat_lt_of_nat Hpos theorem sign_of_succ (n : nat) : sign (succ n) = 1 := sign_of_pos (of_nat_pos !nat.succ_pos) theorem exists_eq_neg_succ_of_nat {a : ℤ} : a < 0 → ∃m : ℕ, a = -[m +1] := int.cases_on a (take m H, absurd (of_nat_nonneg m) (not_le_of_lt H)) (take m H, exists.intro m rfl) end int