/- Copyright (c) 2015 Robert Y. Lewis. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Robert Y. Lewis The real numbers, constructed as equivalence classes of Cauchy sequences of rationals. This construction follows Bishop and Bridges (1985). At this point, we no longer proceed constructively: this file makes heavy use of decidability, excluded middle, and Hilbert choice. Here, we show that ℝ is complete. -/ import data.real.basic data.real.order data.real.division data.rat data.nat data.pnat import logic.axioms.classical open -[coercions] rat local notation 0 := rat.of_num 0 local notation 1 := rat.of_num 1 open -[coercions] nat -- open algebra open eq.ops open pnat local notation 2 := subtype.tag (nat.of_num 2) dec_trivial local notation 3 := subtype.tag (nat.of_num 3) dec_trivial namespace s theorem rat_approx_l1 {s : seq} (H : regular s) : ∀ n : ℕ+, ∃ q : ℚ, ∃ N : ℕ+, ∀ m : ℕ+, m ≥ N → abs (s m - q) ≤ n⁻¹ := begin intro n, existsi (s (2 * n)), existsi 2 * n, intro m Hm, apply rat.le.trans, apply H, rewrite -(add_halves n), apply rat.add_le_add_right, apply inv_ge_of_le Hm end theorem rat_approx {s : seq} (H : regular s) : ∀ n : ℕ+, ∃ q : ℚ, s_le (s_abs (sadd s (sneg (const q)))) (const n⁻¹) := begin intro m, rewrite ↑s_le, apply exists.elim (rat_approx_l1 H m), intro q Hq, apply exists.elim Hq, intro N HN, existsi q, apply nonneg_of_bdd_within, repeat (apply reg_add_reg | apply reg_neg_reg | apply abs_reg_of_reg | apply const_reg | assumption), intro n, existsi N, intro p Hp, rewrite ↑[sadd, sneg, s_abs, const], apply rat.le.trans, rotate 1, apply rat.sub_le_sub_left, apply HN, apply pnat.le.trans, apply Hp, rewrite -*pnat.mul.assoc, apply pnat.mul_le_mul_left, rewrite [sub_self, -neg_zero], apply neg_le_neg, apply rat.le_of_lt, apply inv_pos end definition r_abs (s : reg_seq) : reg_seq := reg_seq.mk (s_abs (reg_seq.sq s)) (abs_reg_of_reg (reg_seq.is_reg s)) theorem abs_well_defined {s t : seq} (Hs : regular s) (Ht : regular t) (Heq : s ≡ t) : s_abs s ≡ s_abs t := begin rewrite [↑equiv at *], intro n, rewrite ↑s_abs, apply rat.le.trans, apply abs_abs_sub_abs_le_abs_sub, apply Heq end theorem r_abs_well_defined {s t : reg_seq} (H : requiv s t) : requiv (r_abs s) (r_abs t) := abs_well_defined (reg_seq.is_reg s) (reg_seq.is_reg t) H theorem r_rat_approx (s : reg_seq) : ∀ n : ℕ+, ∃ q : ℚ, r_le (r_abs (radd s (rneg (r_const q)))) (r_const n⁻¹) := rat_approx (reg_seq.is_reg s) theorem const_bound {s : seq} (Hs : regular s) (n : ℕ+) : s_le (s_abs (sadd s (sneg (const (s n))))) (const n⁻¹) := begin rewrite ↑[s_le, nonneg, s_abs, sadd, sneg, const], intro m, apply iff.mp !rat.le_add_iff_neg_le_sub_left, apply rat.le.trans, apply Hs, apply rat.add_le_add_right, rewrite -*pnat.mul.assoc, apply inv_ge_of_le, apply pnat.mul_le_mul_left end theorem abs_const (a : ℚ) : const (abs a) ≡ s_abs (const a) := begin rewrite [↑s_abs, ↑const], apply equiv.refl end theorem r_abs_const (a : ℚ) : requiv (r_const (abs a) ) (r_abs (r_const a)) := abs_const a theorem equiv_abs_of_ge_zero {s : seq} (Hs : regular s) (Hz : s_le zero s) : s_abs s ≡ s := begin apply eq_of_bdd, apply abs_reg_of_reg Hs, apply Hs, intro j, rewrite ↑s_abs, let Hz' := s_nonneg_of_ge_zero Hs Hz, existsi 2 * j, intro n Hn, apply or.elim (decidable.em (s n ≥ 0)), intro Hpos, rewrite [rat.abs_of_nonneg Hpos, sub_self, abs_zero], apply rat.le_of_lt, apply inv_pos, intro Hneg, let Hneg' := lt_of_not_ge Hneg, have Hsn : -s n - s n > 0, from add_pos (neg_pos_of_neg Hneg') (neg_pos_of_neg Hneg'), rewrite [rat.abs_of_neg Hneg', rat.abs_of_pos Hsn], apply rat.le.trans, apply rat.add_le_add, repeat (apply rat.neg_le_neg; apply Hz'), rewrite *rat.neg_neg, apply rat.le.trans, apply rat.add_le_add, repeat (apply inv_ge_of_le; apply Hn), rewrite pnat.add_halves, apply rat.le.refl end theorem equiv_neg_abs_of_le_zero {s : seq} (Hs : regular s) (Hz : s_le s zero) : s_abs s ≡ sneg s := begin apply eq_of_bdd, apply abs_reg_of_reg Hs, apply reg_neg_reg Hs, intro j, rewrite [↑s_abs, ↑s_le at Hz], have Hz' : nonneg (sneg s), begin apply nonneg_of_nonneg_equiv, rotate 3, apply Hz, rotate 2, apply s_zero_add, repeat (apply Hs | apply zero_is_reg | apply reg_neg_reg | apply reg_add_reg) end, existsi 2 * j, intro n Hn, apply or.elim (decidable.em (s n ≥ 0)), intro Hpos, have Hsn : s n + s n ≥ 0, from add_nonneg Hpos Hpos, rewrite [rat.abs_of_nonneg Hpos, ↑sneg, rat.sub_neg_eq_add, rat.abs_of_nonneg Hsn], rewrite [↑nonneg at Hz', ↑sneg at Hz'], apply rat.le.trans, apply rat.add_le_add, repeat apply (rat.le_of_neg_le_neg !Hz'), apply rat.le.trans, apply rat.add_le_add, repeat (apply inv_ge_of_le; apply Hn), rewrite pnat.add_halves, apply rat.le.refl, intro Hneg, let Hneg' := lt_of_not_ge Hneg, rewrite [rat.abs_of_neg Hneg', ↑sneg, rat.sub_neg_eq_add, rat.neg_add_eq_sub, rat.sub_self, abs_zero], apply rat.le_of_lt, apply inv_pos end theorem r_equiv_abs_of_ge_zero {s : reg_seq} (Hz : r_le r_zero s) : requiv (r_abs s) s := equiv_abs_of_ge_zero (reg_seq.is_reg s) Hz theorem r_equiv_neg_abs_of_le_zero {s : reg_seq} (Hz : r_le s r_zero) : requiv (r_abs s) (-s) := equiv_neg_abs_of_le_zero (reg_seq.is_reg s) Hz end s namespace real open [classes] s /-- definition const (a : ℚ) : ℝ := quot.mk (s.r_const a) theorem add_consts (a b : ℚ) : const a + const b = const (a + b) := quot.sound (s.r_add_consts a b) theorem sub_consts (a b : ℚ) : const a + -const b = const (a - b) := !add_consts theorem add_half_const (n : ℕ+) : const (2 * n)⁻¹ + const (2 * n)⁻¹ = const (n⁻¹) := by rewrite [add_consts, pnat.add_halves]-/ theorem p_add_fractions (n : ℕ+) : (2 * n)⁻¹ + (2 * 3 * n)⁻¹ + (3 * n)⁻¹ = n⁻¹ := assert T : 2⁻¹ + 2⁻¹ * 3⁻¹ + 3⁻¹ = 1, from dec_trivial, by rewrite[*inv_mul_eq_mul_inv,-*rat.right_distrib,T,rat.one_mul] theorem rewrite_helper9 (a b c : ℝ) : b - c = (b - a) - (c - a) := by rewrite[-sub_add_eq_sub_sub_swap,sub_add_cancel] theorem rewrite_helper10 (a b c d : ℝ) : c - d = (c - a) + (a - b) + (b - d) := by rewrite[*add_sub,*sub_add_cancel] noncomputable definition rep (x : ℝ) : s.reg_seq := some (quot.exists_rep x) noncomputable definition re_abs (x : ℝ) : ℝ := quot.lift_on x (λ a, quot.mk (s.r_abs a)) (take a b Hab, quot.sound (s.r_abs_well_defined Hab)) theorem r_abs_nonneg {x : ℝ} : zero ≤ x → re_abs x = x := quot.induction_on x (λ a Ha, quot.sound (s.r_equiv_abs_of_ge_zero Ha)) theorem r_abs_nonpos {x : ℝ} : x ≤ zero → re_abs x = -x := quot.induction_on x (λ a Ha, quot.sound (s.r_equiv_neg_abs_of_le_zero Ha)) theorem abs_const' (a : ℚ) : const (rat.abs a) = re_abs (const a) := quot.sound (s.r_abs_const a) theorem re_abs_is_abs : re_abs = real.abs := funext (begin intro x, apply eq.symm, let Hor := decidable.em (zero ≤ x), apply or.elim Hor, intro Hor1, rewrite [abs_of_nonneg Hor1, r_abs_nonneg Hor1], intro Hor2, have Hor2' : x ≤ zero, from le_of_lt (lt_of_not_ge Hor2), rewrite [abs_of_neg (lt_of_not_ge Hor2), r_abs_nonpos Hor2'] end) theorem abs_const (a : ℚ) : const (rat.abs a) = abs (const a) := by rewrite -re_abs_is_abs -- ???? theorem rat_approx' (x : ℝ) : ∀ n : ℕ+, ∃ q : ℚ, re_abs (x - const q) ≤ const n⁻¹ := quot.induction_on x (λ s n, s.r_rat_approx s n) theorem rat_approx (x : ℝ) : ∀ n : ℕ+, ∃ q : ℚ, abs (x - const q) ≤ const n⁻¹ := by rewrite -re_abs_is_abs; apply rat_approx' noncomputable definition approx (x : ℝ) (n : ℕ+) := some (rat_approx x n) theorem approx_spec (x : ℝ) (n : ℕ+) : abs (x - (const (approx x n))) ≤ const n⁻¹ := some_spec (rat_approx x n) theorem approx_spec' (x : ℝ) (n : ℕ+) : abs ((const (approx x n)) - x) ≤ const n⁻¹ := by rewrite abs_sub; apply approx_spec notation `r_seq` := ℕ+ → ℝ noncomputable definition converges_to (X : r_seq) (a : ℝ) (N : ℕ+ → ℕ+) := ∀ k : ℕ+, ∀ n : ℕ+, n ≥ N k → abs (X n - a) ≤ const k⁻¹ noncomputable definition cauchy (X : r_seq) (M : ℕ+ → ℕ+) := ∀ k : ℕ+, ∀ m n : ℕ+, m ≥ M k → n ≥ M k → abs (X m - X n) ≤ const k⁻¹ --set_option pp.implicit true --set_option pp.coercions true --check add_half_const --check const -- Lean is using algebra operations in these theorems, instead of the ones defined directly on real. -- Need to finish the migration to real to fix this. --set_option pp.all true theorem add_consts2 (a b : ℚ) : const a + const b = const (a + b) := !add_consts --quot.sound (s.r_add_consts a b) --check add_consts --check add_consts2 theorem sub_consts2 (a b : ℚ) : const a - const b = const (a - b) := !sub_consts theorem add_half_const2 (n : ℕ+) : const (2 * n)⁻¹ + const (2 * n)⁻¹ = const (n⁻¹) := by xrewrite [add_consts2, pnat.add_halves] set_option pp.all true theorem cauchy_of_converges_to {X : r_seq} {a : ℝ} {N : ℕ+ → ℕ+} (Hc : converges_to X a N) : cauchy X (λ k, N (2 * k)) := begin intro k m n Hm Hn, rewrite (rewrite_helper9 a), apply le.trans, apply abs_add_le_abs_add_abs, apply le.trans, apply add_le_add, apply Hc, apply Hm, krewrite abs_neg, apply Hc, apply Hn, xrewrite add_half_const2, eapply real.le.refl end definition Nb (M : ℕ+ → ℕ+) := λ k, pnat.max (3 * k) (M (2 * k)) theorem Nb_spec_right (M : ℕ+ → ℕ+) (k : ℕ+) : M (2 * k) ≤ Nb M k := !max_right theorem Nb_spec_left (M : ℕ+ → ℕ+) (k : ℕ+) : 3 * k ≤ Nb M k := !max_left noncomputable definition lim_seq {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X M) : ℕ+ → ℚ := λ k, approx (X (Nb M k)) (2 * k) theorem lim_seq_reg_helper {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X M) {m n : ℕ+} (Hmn : M (2 * n) ≤M (2 * m)) : abs (const (lim_seq Hc m) - X (Nb M m)) + abs (X (Nb M m) - X (Nb M n)) + abs (X (Nb M n) - const (lim_seq Hc n)) ≤ const (m⁻¹ + n⁻¹) := begin apply le.trans, apply add_le_add_three, apply approx_spec', rotate 1, apply approx_spec, rotate 1, apply Hc, rotate 1, apply Nb_spec_right, rotate 1, apply pnat.le.trans, apply Hmn, apply Nb_spec_right, rewrite [*add_consts2, rat.add.assoc, pnat.add_halves], apply const_le_const_of_le, apply rat.add_le_add_right, apply inv_ge_of_le, apply pnat.mul_le_mul_left end -- the remainder is commented out temporarily, until migration is finished. theorem lim_seq_reg {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X M) : s.regular (lim_seq Hc) := begin rewrite ↑s.regular, intro m n, apply le_of_const_le_const, rewrite [abs_const, -sub_consts, -sub_eq_add_neg, (rewrite_helper10 (X (Nb M m)) (X (Nb M n)))],--, -sub_consts2, (rewrite_helper10 (X (Nb M m)) (X (Nb M n)))], apply real.le.trans, apply abs_add_three, let Hor := decidable.em (M (2 * m) ≥ M (2 * n)), apply or.elim Hor, intro Hor1, apply lim_seq_reg_helper Hc Hor1, intro Hor2, let Hor2' := pnat.le_of_lt (pnat.lt_of_not_le Hor2), rewrite [real.abs_sub (X (Nb M n)), abs_sub (X (Nb M m)), abs_sub, -- ??? rat.add.comm, add_comm_three], apply lim_seq_reg_helper Hc Hor2' end theorem lim_seq_spec {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X M) (k : ℕ+) : s.s_le (s.s_abs (s.sadd (lim_seq Hc) (s.sneg (s.const (lim_seq Hc k))) )) (s.const k⁻¹) := begin apply s.const_bound, apply lim_seq_reg end noncomputable definition r_lim_seq {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X M) : s.reg_seq := s.reg_seq.mk (lim_seq Hc) (lim_seq_reg Hc) theorem r_lim_seq_spec {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X M) (k : ℕ+) : s.r_le (s.r_abs (( s.radd (r_lim_seq Hc) (s.rneg (s.r_const ((s.reg_seq.sq (r_lim_seq Hc)) k)))))) (s.r_const (k)⁻¹) := lim_seq_spec Hc k noncomputable definition lim {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X M) : ℝ := quot.mk (r_lim_seq Hc) theorem re_lim_spec {x : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy x M) (k : ℕ+) : re_abs ((lim Hc) - (const ((lim_seq Hc) k))) ≤ const k⁻¹ := r_lim_seq_spec Hc k theorem lim_spec' {x : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy x M) (k : ℕ+) : abs ((lim Hc) - (const ((lim_seq Hc) k))) ≤ const k⁻¹ := by rewrite -re_abs_is_abs; apply re_lim_spec theorem lim_spec {x : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy x M) (k : ℕ+) : abs ((const ((lim_seq Hc) k)) - (lim Hc)) ≤ const (k)⁻¹ := by rewrite abs_sub; apply lim_spec' theorem converges_of_cauchy {X : r_seq} {M : ℕ+ → ℕ+} (Hc : cauchy X M) : converges_to X (lim Hc) (Nb M) := begin intro k n Hn, rewrite (rewrite_helper10 (X (Nb M n)) (const (lim_seq Hc n))), apply le.trans, apply abs_add_three, apply le.trans, apply add_le_add_three, apply Hc, apply pnat.le.trans, rotate 1, apply Hn, rotate_right 1, apply Nb_spec_right, have HMk : M (2 * k) ≤ Nb M n, begin apply pnat.le.trans, apply Nb_spec_right, apply pnat.le.trans, apply Hn, apply pnat.le.trans, apply mul_le_mul_left 3, apply Nb_spec_left end, apply HMk, rewrite ↑lim_seq, apply approx_spec, apply lim_spec, rewrite 2 add_consts2, apply const_le_const_of_le, apply rat.le.trans, apply rat.add_le_add_three, apply rat.le.refl, apply inv_ge_of_le, apply pnat_mul_le_mul_left', apply pnat.le.trans, rotate 1, apply Hn, rotate_right 1, apply Nb_spec_left, apply inv_ge_of_le, apply pnat.le.trans, rotate 1, apply Hn, rotate_right 1, apply Nb_spec_left, rewrite [-*pnat.mul.assoc, p_add_fractions], apply rat.le.refl end end real