import data.nat data.sum data.sigma data.bool open nat sigma algebra inductive tree (A : Type) : Type := | node : A → forest A → tree A with forest : Type := | nil : forest A | cons : tree A → forest A → forest A namespace manual check tree.rec_on definition tree.height {A : Type} (t : tree A) : nat := tree.rec_on t (λ (a : A) (f : forest A) (ih : nat), succ ih) zero (λ (t : tree A) (f : forest A) (ih₁ : nat) (ih₂ : nat), succ (max ih₁ ih₂)) definition forest.height {A : Type} (f : forest A) : nat := forest.rec_on f (λ (a : A) (f : forest A) (ih : nat), succ ih) zero (λ (t : tree A) (f : forest A) (ih₁ : nat) (ih₂ : nat), succ (max ih₁ ih₂)) definition tree_forest (A : Type) := sum (tree A) (forest A) definition tree_forest_height {A : Type} (t : tree_forest A) : nat := sum.rec_on t (λ t, tree.height t) (λ f, forest.height f) definition tree_forest.subterm {A : Type} : tree_forest A → tree_forest A → Prop := inv_image lt tree_forest_height definition tree_forest.subterm.wf [instance] (A : Type) : well_founded (@tree_forest.subterm A) := inv_image.wf tree_forest_height lt.wf local infix `≺`:50 := tree_forest.subterm definition tree_forest.height_lt.node {A : Type} (a : A) (f : forest A) : sum.inr f ≺ sum.inl (tree.node a f) := have aux : forest.height f < tree.height (tree.node a f), from lt.base (forest.height f), aux definition tree_forest.height_lt.cons₁ {A : Type} (t : tree A) (f : forest A) : sum.inl t ≺ sum.inr (forest.cons t f) := have aux : tree.height t < forest.height (forest.cons t f), from lt_succ_of_le (le_max_left _ _), aux definition tree_forest.height_lt.cons₂ {A : Type} (t : tree A) (f : forest A) : sum.inr f ≺ sum.inr (forest.cons t f) := have aux : forest.height f < forest.height (forest.cons t f), from lt_succ_of_le (le_max_right _ _), aux definition kind {A : Type} (t : tree_forest A) : bool := sum.cases_on t (λ t, bool.tt) (λ f, bool.ff) definition map.res {A : Type} (B : Type) (t : tree_forest A) := Σ r : tree_forest B, kind r = kind t set_option find_decl.expensive true find_decl bool.ff ≠ bool.tt -- map using well-founded recursion. We could have used the default recursor. -- this is just a test for the definitional package definition map.F {A B : Type₁} (f : A → B) (tf₁ : tree_forest A) : (Π tf₂ : tree_forest A, tf₂ ≺ tf₁ → map.res B tf₂) → map.res B tf₁ := sum.cases_on tf₁ (λ t : tree A, tree.cases_on t (λ a₁ f₁ (r : Π (tf₂ : tree_forest A), tf₂ ≺ sum.inl (tree.node a₁ f₁) → map.res B tf₂), show map.res B (sum.inl (tree.node a₁ f₁)), from have rf₁ : map.res B (sum.inr f₁), from r (sum.inr f₁) (tree_forest.height_lt.node a₁ f₁), have nf₁ : forest B, from sum.cases_on (pr₁ rf₁) (λf (h : kind (sum.inl f) = kind (sum.inr f₁)), absurd (eq.symm h) bool.ff_ne_tt) (λf h, f) (pr₂ rf₁), sigma.mk (sum.inl (tree.node (f a₁) nf₁)) rfl)) (λ f : forest A, forest.cases_on f (λ r : Π (tf₂ : tree_forest A), tf₂ ≺ sum.inr (forest.nil A) → map.res B tf₂, show map.res B (sum.inr (forest.nil A)), from sigma.mk (sum.inr (forest.nil B)) rfl) (λ t₁ f₁ (r : Π (tf₂ : tree_forest A), tf₂ ≺ sum.inr (forest.cons t₁ f₁) → map.res B tf₂), show map.res B (sum.inr (forest.cons t₁ f₁)), from have rt₁ : map.res B (sum.inl t₁), from r (sum.inl t₁) (tree_forest.height_lt.cons₁ t₁ f₁), have rf₁ : map.res B (sum.inr f₁), from r (sum.inr f₁) (tree_forest.height_lt.cons₂ t₁ f₁), have nt₁ : tree B, from sum.cases_on (pr₁ rt₁) (λ t h, t) (λ f h, absurd h bool.ff_ne_tt) (pr₂ rt₁), have nf₁ : forest B, from sum.cases_on (pr₁ rf₁) (λf (h : kind (sum.inl f) = kind (sum.inr f₁)), absurd (eq.symm h) bool.ff_ne_tt) (λf h, f) (pr₂ rf₁), sigma.mk (sum.inr (forest.cons nt₁ nf₁)) rfl)) definition map {A B : Type₁} (f : A → B) (tf : tree_forest A) : map.res B tf := well_founded.fix (@map.F A B f) tf eval map succ (sum.inl (tree.node 2 (forest.cons (tree.node 1 (forest.nil nat)) (forest.nil nat)))) end manual