/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Floris van Doorn -/ import types.trunc types.pi arity open eq is_trunc pi equiv equiv.ops namespace category /- Just as in Coq-HoTT we add two redundant fields to precategories: assoc' and id_id. The first is to make (Cᵒᵖ)ᵒᵖ = C definitionally when C is a constructor. The second is to ensure that the functor from the terminal category 1 ⇒ Cᵒᵖ is opposite to the functor 1 ⇒ C. -/ structure precategory [class] (ob : Type) : Type := mk' :: (hom : ob → ob → Type) (comp : Π⦃a b c : ob⦄, hom b c → hom a b → hom a c) (ID : Π (a : ob), hom a a) (assoc : Π ⦃a b c d : ob⦄ (h : hom c d) (g : hom b c) (f : hom a b), comp h (comp g f) = comp (comp h g) f) (assoc' : Π ⦃a b c d : ob⦄ (h : hom c d) (g : hom b c) (f : hom a b), comp (comp h g) f = comp h (comp g f)) (id_left : Π ⦃a b : ob⦄ (f : hom a b), comp !ID f = f) (id_right : Π ⦃a b : ob⦄ (f : hom a b), comp f !ID = f) (id_id : Π (a : ob), comp !ID !ID = ID a) (is_hset_hom : Π(a b : ob), is_hset (hom a b)) -- attribute precategory [multiple-instances] --this is not used anywhere attribute precategory.is_hset_hom [instance] infixr ∘ := precategory.comp -- input ⟶ using \--> (this is a different arrow than \-> (→)) infixl [parsing_only] ` ⟶ `:25 := precategory.hom namespace hom infixl ` ⟶ `:60 := precategory.hom -- if you open this namespace, hom a b is printed as a ⟶ b end hom abbreviation hom [unfold 2] := @precategory.hom abbreviation comp [unfold 2] := @precategory.comp abbreviation ID [unfold 2] := @precategory.ID abbreviation assoc [unfold 2] := @precategory.assoc abbreviation assoc' [unfold 2] := @precategory.assoc' abbreviation id_left [unfold 2] := @precategory.id_left abbreviation id_right [unfold 2] := @precategory.id_right abbreviation id_id [unfold 2] := @precategory.id_id abbreviation is_hset_hom [unfold 2] := @precategory.is_hset_hom definition is_hprop_hom_eq {ob : Type} [C : precategory ob] {x y : ob} (f g : x ⟶ y) : is_hprop (f = g) := _ -- the constructor you want to use in practice protected definition precategory.mk [constructor] {ob : Type} (hom : ob → ob → Type) [hset : Π (a b : ob), is_hset (hom a b)] (comp : Π ⦃a b c : ob⦄, hom b c → hom a b → hom a c) (ID : Π (a : ob), hom a a) (ass : Π ⦃a b c d : ob⦄ (h : hom c d) (g : hom b c) (f : hom a b), comp h (comp g f) = comp (comp h g) f) (idl : Π ⦃a b : ob⦄ (f : hom a b), comp (ID b) f = f) (idr : Π ⦃a b : ob⦄ (f : hom a b), comp f (ID a) = f) : precategory ob := precategory.mk' hom comp ID ass (λa b c d h g f, !ass⁻¹) idl idr (λa, !idl) hset section basic_lemmas variables {ob : Type} [C : precategory ob] variables {a b c d : ob} {h : c ⟶ d} {g : hom b c} {f f' : hom a b} {i : a ⟶ a} include C definition id [reducible] [unfold 2] := ID a definition id_leftright (f : hom a b) : id ∘ f ∘ id = f := !id_left ⬝ !id_right definition comp_id_eq_id_comp (f : hom a b) : f ∘ id = id ∘ f := !id_right ⬝ !id_left⁻¹ definition id_comp_eq_comp_id (f : hom a b) : id ∘ f = f ∘ id := !id_left ⬝ !id_right⁻¹ definition left_id_unique (H : Π{b} {f : hom b a}, i ∘ f = f) : i = id := calc i = i ∘ id : by rewrite id_right ... = id : by rewrite H definition right_id_unique (H : Π{b} {f : hom a b}, f ∘ i = f) : i = id := calc i = id ∘ i : by rewrite id_left ... = id : by rewrite H definition homset [reducible] [constructor] (x y : ob) : hset := hset.mk (hom x y) _ end basic_lemmas section squares parameters {ob : Type} [C : precategory ob] local infixl ` ⟶ `:25 := @precategory.hom ob C local infixr ∘ := @precategory.comp ob C _ _ _ definition compose_squares {xa xb xc ya yb yc : ob} {xg : xb ⟶ xc} {xf : xa ⟶ xb} {yg : yb ⟶ yc} {yf : ya ⟶ yb} {wa : xa ⟶ ya} {wb : xb ⟶ yb} {wc : xc ⟶ yc} (xyab : wb ∘ xf = yf ∘ wa) (xybc : wc ∘ xg = yg ∘ wb) : wc ∘ (xg ∘ xf) = (yg ∘ yf) ∘ wa := calc wc ∘ (xg ∘ xf) = (wc ∘ xg) ∘ xf : by rewrite assoc ... = (yg ∘ wb) ∘ xf : by rewrite xybc ... = yg ∘ (wb ∘ xf) : by rewrite assoc ... = yg ∘ (yf ∘ wa) : by rewrite xyab ... = (yg ∘ yf) ∘ wa : by rewrite assoc definition compose_squares_2x2 {xa xb xc ya yb yc za zb zc : ob} {xg : xb ⟶ xc} {xf : xa ⟶ xb} {yg : yb ⟶ yc} {yf : ya ⟶ yb} {zg : zb ⟶ zc} {zf : za ⟶ zb} {va : ya ⟶ za} {vb : yb ⟶ zb} {vc : yc ⟶ zc} {wa : xa ⟶ ya} {wb : xb ⟶ yb} {wc : xc ⟶ yc} (xyab : wb ∘ xf = yf ∘ wa) (xybc : wc ∘ xg = yg ∘ wb) (yzab : vb ∘ yf = zf ∘ va) (yzbc : vc ∘ yg = zg ∘ vb) : (vc ∘ wc) ∘ (xg ∘ xf) = (zg ∘ zf) ∘ (va ∘ wa) := calc (vc ∘ wc) ∘ (xg ∘ xf) = vc ∘ (wc ∘ (xg ∘ xf)) : by rewrite (assoc vc wc _) ... = vc ∘ ((yg ∘ yf) ∘ wa) : by rewrite (compose_squares xyab xybc) ... = (vc ∘ (yg ∘ yf)) ∘ wa : by rewrite assoc ... = ((zg ∘ zf) ∘ va) ∘ wa : by rewrite (compose_squares yzab yzbc) ... = (zg ∘ zf) ∘ (va ∘ wa) : by rewrite assoc definition square_precompose {xa xb xc yb yc : ob} {xg : xb ⟶ xc} {yg : yb ⟶ yc} {wb : xb ⟶ yb} {wc : xc ⟶ yc} (H : wc ∘ xg = yg ∘ wb) (xf : xa ⟶ xb) : wc ∘ xg ∘ xf = yg ∘ wb ∘ xf := calc wc ∘ xg ∘ xf = (wc ∘ xg) ∘ xf : by rewrite assoc ... = (yg ∘ wb) ∘ xf : by rewrite H ... = yg ∘ wb ∘ xf : by rewrite assoc definition square_postcompose {xb xc yb yc yd : ob} {xg : xb ⟶ xc} {yg : yb ⟶ yc} {wb : xb ⟶ yb} {wc : xc ⟶ yc} (H : wc ∘ xg = yg ∘ wb) (yh : yc ⟶ yd) : (yh ∘ wc) ∘ xg = (yh ∘ yg) ∘ wb := calc (yh ∘ wc) ∘ xg = yh ∘ wc ∘ xg : by rewrite assoc ... = yh ∘ yg ∘ wb : by rewrite H ... = (yh ∘ yg) ∘ wb : by rewrite assoc definition square_prepostcompose {xa xb xc yb yc yd : ob} {xg : xb ⟶ xc} {yg : yb ⟶ yc} {wb : xb ⟶ yb} {wc : xc ⟶ yc} (H : wc ∘ xg = yg ∘ wb) (yh : yc ⟶ yd) (xf : xa ⟶ xb) : (yh ∘ wc) ∘ (xg ∘ xf) = (yh ∘ yg) ∘ (wb ∘ xf) := square_precompose (square_postcompose H yh) xf end squares structure Precategory : Type := (carrier : Type) (struct : precategory carrier) definition precategory.Mk [reducible] [constructor] {ob} (C) : Precategory := Precategory.mk ob C definition precategory.MK [reducible] [constructor] (a b c d e f g h) : Precategory := Precategory.mk a (@precategory.mk a b c d e f g h) abbreviation carrier [unfold 1] := @Precategory.carrier attribute Precategory.carrier [coercion] attribute Precategory.struct [instance] [priority 10000] [coercion] -- definition precategory.carrier [coercion] [reducible] := Precategory.carrier -- definition precategory.struct [instance] [coercion] [reducible] := Precategory.struct notation g ` ∘[`:60 C:0 `] `:0 f:60 := @comp (Precategory.carrier C) (Precategory.struct C) _ _ _ g f -- TODO: make this left associative definition Precategory.eta (C : Precategory) : Precategory.mk C C = C := Precategory.rec (λob c, idp) C /-Characterization of paths between precategories-/ -- introduction tule for paths between precategories definition precategory_eq {ob : Type} {C D : precategory ob} (p : Π{a b}, @hom ob C a b = @hom ob D a b) (q : Πa b c g f, cast p (@comp ob C a b c g f) = @comp ob D a b c (cast p g) (cast p f)) : C = D := begin induction C with hom1 comp1 ID1 a b il ir, induction D with hom2 comp2 ID2 a' b' il' ir', esimp at *, revert q, eapply homotopy2.rec_on @p, esimp, clear p, intro p q, induction p, esimp at *, assert H : comp1 = comp2, { apply eq_of_homotopy3, intros, apply eq_of_homotopy2, intros, apply q}, induction H, assert K : ID1 = ID2, { apply eq_of_homotopy, intro a, exact !ir'⁻¹ ⬝ !il}, induction K, apply ap0111111 (precategory.mk' hom1 comp1 ID1): apply is_hprop.elim end definition precategory_eq_of_equiv {ob : Type} {C D : precategory ob} (p : Π⦃a b⦄, @hom ob C a b ≃ @hom ob D a b) (q : Π{a b c} g f, p (@comp ob C a b c g f) = @comp ob D a b c (p g) (p f)) : C = D := begin fapply precategory_eq, { intro a b, exact ua !@p}, { intros, refine !cast_ua ⬝ !q ⬝ _, apply ap011 !@comp !cast_ua⁻¹ !cast_ua⁻¹}, end /- if we need to prove properties about precategory_eq, it might be easier with the following proof: begin induction C with hom1 comp1 ID1, induction D with hom2 comp2 ID2, esimp at *, assert H : Σ(s : hom1 = hom2), (λa b, equiv_of_eq (apd100 s a b)) = p, { fconstructor, { apply eq_of_homotopy2, intros, apply ua, apply p}, { apply eq_of_homotopy2, intros, rewrite [to_right_inv !eq_equiv_homotopy2, equiv_of_eq_ua]}}, induction H with H1 H2, induction H1, esimp at H2, assert K : (λa b, equiv.refl) = p, { refine _ ⬝ H2, apply eq_of_homotopy2, intros, exact !equiv_of_eq_refl⁻¹}, induction K, clear H2, esimp at *, assert H : comp1 = comp2, { apply eq_of_homotopy3, intros, apply eq_of_homotopy2, intros, apply q}, assert K : ID1 = ID2, { apply eq_of_homotopy, intros, apply r}, induction H, induction K, apply ap0111111 (precategory.mk' hom1 comp1 ID1): apply is_hprop.elim end -/ definition Precategory_eq {C D : Precategory} (p : carrier C = carrier D) (q : Π{a b : C}, a ⟶ b = cast p a ⟶ cast p b) (r : Π{a b c : C} (g : b ⟶ c) (f : a ⟶ b), cast q (g ∘ f) = cast q g ∘ cast q f) : C = D := begin induction C with X C, induction D with Y D, esimp at *, induction p, esimp at *, apply ap (Precategory.mk X), apply precategory_eq @q @r end definition Precategory_eq_of_equiv {C D : Precategory} (p : carrier C ≃ carrier D) (q : Π⦃a b : C⦄, a ⟶ b ≃ p a ⟶ p b) (r : Π{a b c : C} (g : b ⟶ c) (f : a ⟶ b), q (g ∘ f) = q g ∘ q f) : C = D := begin induction C with X C, induction D with Y D, esimp at *, revert q r, eapply equiv.rec_on_ua p, clear p, intro p, induction p, esimp, intros, apply ap (Precategory.mk X), apply precategory_eq_of_equiv @q @r end -- elimination rules for paths between precategories. -- The first elimination rule is "ap carrier" definition Precategory_eq_hom [unfold 3] {C D : Precategory} (p : C = D) (a b : C) : hom a b = hom (cast (ap carrier p) a) (cast (ap carrier p) b) := by induction p; reflexivity --(ap10 (ap10 (apd (λx, @hom (carrier x) (Precategory.struct x)) p⁻¹ᵖ) a) b)⁻¹ᵖ ⬝ _ -- beta/eta rules definition ap_Precategory_eq' {C D : Precategory} (p : carrier C = carrier D) (q : Π{a b : C}, a ⟶ b = cast p a ⟶ cast p b) (r : Π{a b c : C} (g : b ⟶ c) (f : a ⟶ b), cast q (g ∘ f) = cast q g ∘ cast q f) (s : Πa, cast q (ID a) = ID (cast p a)) : ap carrier (Precategory_eq p @q @r) = p := begin induction C with X C, induction D with Y D, esimp at *, induction p, rewrite [↑Precategory_eq, -ap_compose,↑function.compose,ap_constant] end /- theorem Precategory_eq'_eta {C D : Precategory} (p : C = D) : Precategory_eq (ap carrier p) (Precategory_eq_hom p) (by induction p; intros; reflexivity) = p := begin induction p, induction C with X C, unfold Precategory_eq, induction C, unfold precategory_eq, exact sorry end -/ /- theorem Precategory_eq2 {C D : Precategory} (p q : C = D) (r : ap carrier p = ap carrier q) (s : Precategory_eq_hom p =[r] Precategory_eq_hom q) : p = q := begin end -/ end category