/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura Basic datatypes -/ prelude notation [parsing-only] `Type'` := Type.{_+1} notation [parsing-only] `Type₊` := Type.{_+1} notation `Type₀` := Type.{0} notation `Type₁` := Type.{1} notation `Type₂` := Type.{2} notation `Type₃` := Type.{3} inductive unit.{l} : Type.{l} := star : unit inductive empty : Type inductive eq {A : Type} (a : A) : A → Type := refl : eq a a structure prod (A B : Type) := mk :: (pr1 : A) (pr2 : B) inductive sum (A B : Type) : Type := inl {} : A → sum A B, inr {} : B → sum A B -- pos_num and num are two auxiliary datatypes used when parsing numerals such as 13, 0, 26. -- The parser will generate the terms (pos (bit1 (bit1 (bit0 one)))), zero, and (pos (bit0 (bit1 (bit1 one)))). -- This representation can be coerced in whatever we want (e.g., naturals, integers, reals, etc). inductive pos_num : Type := one : pos_num, bit1 : pos_num → pos_num, bit0 : pos_num → pos_num inductive num : Type := zero : num, pos : pos_num → num inductive bool : Type := ff : bool, tt : bool inductive char : Type := mk : bool → bool → bool → bool → bool → bool → bool → bool → char inductive string : Type := empty : string, str : char → string → string inductive nat := zero : nat, succ : nat → nat inductive option (A : Type) : Type := none {} : option A, some : A → option A