---------------------------------------------------------------------------------------------------- -- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura ---------------------------------------------------------------------------------------------------- import logic.connectives.basic logic.connectives.quantifiers logic.connectives.cast using eq_proofs axiom prop_complete (a : Prop) : a = true ∨ a = false theorem case (P : Prop → Prop) (H1 : P true) (H2 : P false) (a : Prop) : P a := or_elim (prop_complete a) (assume Ht : a = true, Ht⁻¹ ▸ H1) (assume Hf : a = false, Hf⁻¹ ▸ H2) theorem em (a : Prop) : a ∨ ¬a := or_elim (prop_complete a) (assume Ht : a = true, or_inl (eqt_elim Ht)) (assume Hf : a = false, or_inr (eqf_elim Hf)) theorem prop_complete_swapped (a : Prop) : a = false ∨ a = true := case (λ x, x = false ∨ x = true) (or_inr (refl true)) (or_inl (refl false)) a theorem not_true : (¬true) = false := have aux : (¬true) ≠ true, from assume H : (¬true) = true, absurd_not_true (H⁻¹ ▸ trivial), resolve_right (prop_complete (¬true)) aux theorem not_false : (¬false) = true := have aux : (¬false) ≠ false, from assume H : (¬false) = false, H ▸ not_false_trivial, resolve_right (prop_complete_swapped (¬false)) aux theorem not_not_eq (a : Prop) : (¬¬a) = a := case (λ x, (¬¬x) = x) (calc (¬¬true) = (¬false) : {not_true} ... = true : not_false) (calc (¬¬false) = (¬true) : {not_false} ... = false : not_true) a theorem not_not_elim {a : Prop} (H : ¬¬a) : a := (not_not_eq a) ◂ H theorem propext {a b : Prop} (Hab : a → b) (Hba : b → a) : a = b := or_elim (prop_complete a) (assume Hat, or_elim (prop_complete b) (assume Hbt, Hat ⬝ Hbt⁻¹) (assume Hbf, false_elim (a = b) (Hbf ▸ (Hab (eqt_elim Hat))))) (assume Haf, or_elim (prop_complete b) (assume Hbt, false_elim (a = b) (Haf ▸ (Hba (eqt_elim Hbt)))) (assume Hbf, Haf ⬝ Hbf⁻¹)) theorem iff_to_eq {a b : Prop} (H : a ↔ b) : a = b := iff_elim (assume H1 H2, propext H1 H2) H theorem iff_eq_eq {a b : Prop} : (a ↔ b) = (a = b) := propext (assume H, iff_to_eq H) (assume H, eq_to_iff H) theorem eqt_intro {a : Prop} (H : a) : a = true := propext (assume H1 : a, trivial) (assume H2 : true, H) theorem eqf_intro {a : Prop} (H : ¬a) : a = false := propext (assume H1 : a, absurd H1 H) (assume H2 : false, false_elim a H2) theorem by_contradiction {a : Prop} (H : ¬a → false) : a := or_elim (em a) (assume H1 : a, H1) (assume H1 : ¬a, false_elim a (H H1)) theorem a_neq_a {A : Type} (a : A) : (a ≠ a) = false := propext (assume H, a_neq_a_elim H) (assume H, false_elim (a ≠ a) H) theorem eq_id {A : Type} (a : A) : (a = a) = true := eqt_intro (refl a) theorem heq_id {A : Type} (a : A) : (a == a) = true := eqt_intro (hrefl a) theorem not_or (a b : Prop) : (¬(a ∨ b)) = (¬a ∧ ¬b) := propext (assume H, or_elim (em a) (assume Ha, absurd_elim (¬a ∧ ¬b) (or_inl Ha) H) (assume Hna, or_elim (em b) (assume Hb, absurd_elim (¬a ∧ ¬b) (or_inr Hb) H) (assume Hnb, and_intro Hna Hnb))) (assume (H : ¬a ∧ ¬b) (N : a ∨ b), or_elim N (assume Ha, absurd Ha (and_elim_left H)) (assume Hb, absurd Hb (and_elim_right H))) theorem not_and (a b : Prop) : (¬(a ∧ b)) = (¬a ∨ ¬b) := propext (assume H, or_elim (em a) (assume Ha, or_elim (em b) (assume Hb, absurd_elim (¬a ∨ ¬b) (and_intro Ha Hb) H) (assume Hnb, or_inr Hnb)) (assume Hna, or_inl Hna)) (assume (H : ¬a ∨ ¬b) (N : a ∧ b), or_elim H (assume Hna, absurd (and_elim_left N) Hna) (assume Hnb, absurd (and_elim_right N) Hnb)) theorem imp_or (a b : Prop) : (a → b) = (¬a ∨ b) := propext (assume H : a → b, (or_elim (em a) (assume Ha : a, or_inr (H Ha)) (assume Hna : ¬a, or_inl Hna))) (assume (H : ¬a ∨ b) (Ha : a), resolve_right H ((not_not_eq a)⁻¹ ◂ Ha)) theorem not_implies (a b : Prop) : (¬(a → b)) = (a ∧ ¬b) := calc (¬(a → b)) = (¬(¬a ∨ b)) : {imp_or a b} ... = (¬¬a ∧ ¬b) : not_or (¬a) b ... = (a ∧ ¬b) : {not_not_eq a} theorem a_eq_not_a (a : Prop) : (a = ¬a) = false := propext (assume H, or_elim (em a) (assume Ha, absurd Ha (H ▸ Ha)) (assume Hna, absurd (H⁻¹ ▸ Hna) Hna)) (assume H, false_elim (a = ¬a) H) theorem true_eq_false : (true = false) = false := not_true ▸ (a_eq_not_a true) theorem false_eq_true : (false = true) = false := not_false ▸ (a_eq_not_a false) theorem a_eq_true (a : Prop) : (a = true) = a := propext (assume H, eqt_elim H) (assume H, eqt_intro H) theorem a_eq_false (a : Prop) : (a = false) = ¬a := propext (assume H, eqf_elim H) (assume H, eqf_intro H) theorem not_exists_forall {A : Type} {P : A → Prop} (H : ¬∃x, P x) : ∀x, ¬P x := take x, or_elim (em (P x)) (assume Hp : P x, absurd_elim (¬P x) (exists_intro x Hp) H) (assume Hn : ¬P x, Hn) theorem not_forall_exists {A : Type} {P : A → Prop} (H : ¬∀x, P x) : ∃x, ¬P x := by_contradiction (assume H1 : ¬∃ x, ¬P x, have H2 : ∀x, ¬¬P x, from not_exists_forall H1, have H3 : ∀x, P x, from take x, not_not_elim (H2 x), absurd H3 H) theorem peirce (a b : Prop) : ((a → b) → a) → a := assume H, by_contradiction (assume Hna : ¬a, have Hnna : ¬¬a, from not_implies_left (mt H Hna), absurd (not_not_elim Hnna) Hna)