-- Copyright (c) 2014 Floris van Doorn. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Floris van Doorn import .basic open path precategory namespace morphism variables {ob : Type} [C : precategory ob] include C variables {a b c : ob} {g : b ⟶ c} {f : a ⟶ b} {h : b ⟶ a} inductive is_section [class] (f : a ⟶ b) : Type := mk : ∀{g}, g ∘ f ≈ id → is_section f inductive is_retraction [class] (f : a ⟶ b) : Type := mk : ∀{g}, f ∘ g ≈ id → is_retraction f inductive is_iso [class] (f : a ⟶ b) : Type := mk : ∀{g}, g ∘ f ≈ id → f ∘ g ≈ id → is_iso f definition retraction_of (f : a ⟶ b) [H : is_section f] : hom b a := is_section.rec (λg h, g) H definition section_of (f : a ⟶ b) [H : is_retraction f] : hom b a := is_retraction.rec (λg h, g) H definition inverse (f : a ⟶ b) [H : is_iso f] : hom b a := is_iso.rec (λg h1 h2, g) H postfix `⁻¹` := inverse theorem inverse_compose (f : a ⟶ b) [H : is_iso f] : f⁻¹ ∘ f ≈ id := is_iso.rec (λg h1 h2, h1) H theorem compose_inverse (f : a ⟶ b) [H : is_iso f] : f ∘ f⁻¹ ≈ id := is_iso.rec (λg h1 h2, h2) H theorem retraction_compose (f : a ⟶ b) [H : is_section f] : retraction_of f ∘ f ≈ id := is_section.rec (λg h, h) H theorem compose_section (f : a ⟶ b) [H : is_retraction f] : f ∘ section_of f ≈ id := is_retraction.rec (λg h, h) H theorem iso_imp_retraction [instance] (f : a ⟶ b) [H : is_iso f] : is_section f := is_section.mk !inverse_compose theorem iso_imp_section [instance] (f : a ⟶ b) [H : is_iso f] : is_retraction f := is_retraction.mk !compose_inverse theorem id_is_iso [instance] : is_iso (ID a) := is_iso.mk !id_compose !id_compose theorem inverse_is_iso [instance] (f : a ⟶ b) [H : is_iso f] : is_iso (f⁻¹) := is_iso.mk !compose_inverse !inverse_compose theorem left_inverse_eq_right_inverse {f : a ⟶ b} {g g' : hom b a} (Hl : g ∘ f ≈ id) (Hr : f ∘ g' ≈ id) : g ≈ g' := calc g ≈ g ∘ id : !id_right ... ≈ g ∘ f ∘ g' : Hr ... ≈ (g ∘ f) ∘ g' : assoc ... ≈ id ∘ g' : Hl ... ≈ g' : id_left theorem retraction_eq_intro [H : is_section f] (H2 : f ∘ h ≈ id) : retraction_of f ≈ h := left_inverse_eq_right_inverse !retraction_compose H2 theorem section_eq_intro [H : is_retraction f] (H2 : h ∘ f ≈ id) : section_of f ≈ h := (left_inverse_eq_right_inverse H2 !compose_section)⁻¹ theorem inverse_eq_intro_right [H : is_iso f] (H2 : f ∘ h ≈ id) : f⁻¹ ≈ h := left_inverse_eq_right_inverse !inverse_compose H2 theorem inverse_eq_intro_left [H : is_iso f] (H2 : h ∘ f ≈ id) : f⁻¹ ≈ h := (left_inverse_eq_right_inverse H2 !compose_inverse)⁻¹ theorem section_eq_retraction (f : a ⟶ b) [Hl : is_section f] [Hr : is_retraction f] : retraction_of f ≈ section_of f := retraction_eq_intro !compose_section theorem section_retraction_imp_iso (f : a ⟶ b) [Hl : is_section f] [Hr : is_retraction f] : is_iso f := is_iso.mk ((section_eq_retraction f) ▹ (retraction_compose f)) (compose_section f) theorem inverse_unique (H H' : is_iso f) : @inverse _ _ _ _ f H ≈ @inverse _ _ _ _ f H' := inverse_eq_intro_left !inverse_compose theorem inverse_involutive (f : a ⟶ b) [H : is_iso f] : (f⁻¹)⁻¹ ≈ f := inverse_eq_intro_right !inverse_compose theorem retraction_of_id : retraction_of (ID a) ≈ id := retraction_eq_intro !id_compose theorem section_of_id : section_of (ID a) ≈ id := section_eq_intro !id_compose theorem iso_of_id : ID a⁻¹ ≈ id := inverse_eq_intro_left !id_compose theorem composition_is_section [instance] [Hf : is_section f] [Hg : is_section g] : is_section (g ∘ f) := is_section.mk (calc (retraction_of f ∘ retraction_of g) ∘ g ∘ f ≈ retraction_of f ∘ retraction_of g ∘ g ∘ f : assoc _ _ (g ∘ f) ... ≈ retraction_of f ∘ (retraction_of g ∘ g) ∘ f : assoc _ g f ... ≈ retraction_of f ∘ id ∘ f : retraction_compose g ... ≈ retraction_of f ∘ f : id_left f ... ≈ id : retraction_compose) theorem composition_is_retraction [instance] (Hf : is_retraction f) (Hg : is_retraction g) : is_retraction (g ∘ f) := is_retraction.mk (calc (g ∘ f) ∘ section_of f ∘ section_of g ≈ g ∘ f ∘ section_of f ∘ section_of g : assoc ... ≈ g ∘ (f ∘ section_of f) ∘ section_of g : assoc f _ _ ... ≈ g ∘ id ∘ section_of g : compose_section f ... ≈ g ∘ section_of g : id_left (section_of g) ... ≈ id : compose_section) theorem composition_is_inverse [instance] (Hf : is_iso f) (Hg : is_iso g) : is_iso (g ∘ f) := !section_retraction_imp_iso inductive isomorphic (a b : ob) : Type := mk : ∀(g : a ⟶ b) [H : is_iso g], isomorphic a b /- namespace isomorphic open relation -- should these be coercions? definition iso [coercion] (H : isomorphic a b) : a ⟶ b := isomorphic.rec (λg h, g) H theorem is_iso [instance] (H : isomorphic a b) : is_iso (isomorphic.iso H) := isomorphic.rec (λg h, h) H infix `≅`:50 := isomorphic theorem refl (a : ob) : a ≅ a := mk id theorem symm ⦃a b : ob⦄ (H : a ≅ b) : b ≅ a := mk (inverse (iso H)) theorem trans ⦃a b c : ob⦄ (H1 : a ≅ b) (H2 : b ≅ c) : a ≅ c := mk (iso H2 ∘ iso H1) theorem is_equivalence_eq [instance] (T : Type) : is_equivalence isomorphic := is_equivalence.mk (is_reflexive.mk refl) (is_symmetric.mk symm) (is_transitive.mk trans) end isomorphic -/ inductive is_mono [class] (f : a ⟶ b) : Type := mk : (∀c (g h : hom c a), f ∘ g ≈ f ∘ h → g ≈ h) → is_mono f inductive is_epi [class] (f : a ⟶ b) : Type := mk : (∀c (g h : hom b c), g ∘ f ≈ h ∘ f → g ≈ h) → is_epi f theorem mono_elim [H : is_mono f] {g h : c ⟶ a} (H2 : f ∘ g ≈ f ∘ h) : g ≈ h := is_mono.rec (λH3, H3 c g h H2) H theorem epi_elim [H : is_epi f] {g h : b ⟶ c} (H2 : g ∘ f ≈ h ∘ f) : g ≈ h := is_epi.rec (λH3, H3 c g h H2) H theorem section_is_mono [instance] (f : a ⟶ b) [H : is_section f] : is_mono f := is_mono.mk (λ c g h H, calc g ≈ id ∘ g : id_left ... ≈ (retraction_of f ∘ f) ∘ g : retraction_compose f ... ≈ retraction_of f ∘ f ∘ g : assoc ... ≈ retraction_of f ∘ f ∘ h : H ... ≈ (retraction_of f ∘ f) ∘ h : assoc ... ≈ id ∘ h : retraction_compose f ... ≈ h : id_left) theorem retraction_is_epi [instance] (f : a ⟶ b) [H : is_retraction f] : is_epi f := is_epi.mk (λ c g h H, calc g ≈ g ∘ id : id_right ... ≈ g ∘ f ∘ section_of f : compose_section f ... ≈ (g ∘ f) ∘ section_of f : assoc ... ≈ (h ∘ f) ∘ section_of f : H ... ≈ h ∘ f ∘ section_of f : assoc ... ≈ h ∘ id : compose_section f ... ≈ h : id_right) --these theorems are now proven automatically using type classes --should they be instances? theorem id_is_mono : is_mono (ID a) theorem id_is_epi : is_epi (ID a) theorem composition_is_mono [instance] [Hf : is_mono f] [Hg : is_mono g] : is_mono (g ∘ f) := is_mono.mk (λ d h₁ h₂ H, have H2 : g ∘ (f ∘ h₁) ≈ g ∘ (f ∘ h₂), from (assoc g f h₁)⁻¹ ▹ (assoc g f h₂)⁻¹ ▹ H, mono_elim (mono_elim H2)) theorem composition_is_epi [instance] [Hf : is_epi f] [Hg : is_epi g] : is_epi (g ∘ f) := is_epi.mk (λ d h₁ h₂ H, have H2 : (h₁ ∘ g) ∘ f ≈ (h₂ ∘ g) ∘ f, from assoc h₁ g f ▹ assoc h₂ g f ▹ H, epi_elim (epi_elim H2)) end morphism namespace morphism --rewrite lemmas for inverses, modified from --https://github.com/JasonGross/HoTT-categories/blob/master/theories/Categories/Category/Morphisms.v namespace iso section variables {ob : Type} [C : precategory ob] include C variables {a b c d : ob} (f : b ⟶ a) (r : c ⟶ d) (q : b ⟶ c) (p : a ⟶ b) (g : d ⟶ c) variable [Hq : is_iso q] include Hq theorem compose_pV : q ∘ q⁻¹ ≈ id := !compose_inverse theorem compose_Vp : q⁻¹ ∘ q ≈ id := !inverse_compose theorem compose_V_pp : q⁻¹ ∘ (q ∘ p) ≈ p := calc q⁻¹ ∘ (q ∘ p) ≈ (q⁻¹ ∘ q) ∘ p : assoc (q⁻¹) q p ... ≈ id ∘ p : inverse_compose q ... ≈ p : id_left p theorem compose_p_Vp : q ∘ (q⁻¹ ∘ g) ≈ g := calc q ∘ (q⁻¹ ∘ g) ≈ (q ∘ q⁻¹) ∘ g : assoc q (q⁻¹) g ... ≈ id ∘ g : compose_inverse q ... ≈ g : id_left g theorem compose_pp_V : (r ∘ q) ∘ q⁻¹ ≈ r := calc (r ∘ q) ∘ q⁻¹ ≈ r ∘ q ∘ q⁻¹ : assoc r q (q⁻¹)⁻¹ ... ≈ r ∘ id : compose_inverse q ... ≈ r : id_right r theorem compose_pV_p : (f ∘ q⁻¹) ∘ q ≈ f := calc (f ∘ q⁻¹) ∘ q ≈ f ∘ q⁻¹ ∘ q : assoc f (q⁻¹) q⁻¹ ... ≈ f ∘ id : inverse_compose q ... ≈ f : id_right f theorem inv_pp [H' : is_iso p] : (q ∘ p)⁻¹ ≈ p⁻¹ ∘ q⁻¹ := have H1 : (p⁻¹ ∘ q⁻¹) ∘ q ∘ p ≈ p⁻¹ ∘ (q⁻¹ ∘ (q ∘ p)), from assoc (p⁻¹) (q⁻¹) (q ∘ p)⁻¹, have H2 : (p⁻¹) ∘ (q⁻¹ ∘ (q ∘ p)) ≈ p⁻¹ ∘ p, from ap _ (compose_V_pp q p), have H3 : p⁻¹ ∘ p ≈ id, from inverse_compose p, inverse_eq_intro_left (H1 ⬝ H2 ⬝ H3) --the proof using calc is hard for the unifier (needs ~90k steps) -- inverse_eq_intro_left -- (calc -- (p⁻¹ ∘ (q⁻¹)) ∘ q ∘ p = p⁻¹ ∘ (q⁻¹ ∘ (q ∘ p)) : assoc (p⁻¹) (q⁻¹) (q ∘ p)⁻¹ -- ... = (p⁻¹) ∘ p : congr_arg (λx, p⁻¹ ∘ x) (compose_V_pp q p) -- ... = id : inverse_compose p) theorem inv_Vp [H' : is_iso g] : (q⁻¹ ∘ g)⁻¹ ≈ g⁻¹ ∘ q := inverse_involutive q ▹ inv_pp (q⁻¹) g theorem inv_pV [H' : is_iso f] : (q ∘ f⁻¹)⁻¹ ≈ f ∘ q⁻¹ := inverse_involutive f ▹ inv_pp q (f⁻¹) theorem inv_VV [H' : is_iso r] : (q⁻¹ ∘ r⁻¹)⁻¹ ≈ r ∘ q := inverse_involutive r ▹ inv_Vp q (r⁻¹) end section variables {ob : Type} {C : precategory ob} include C variables {d c b a : ob} {i : b ⟶ c} {f : b ⟶ a} {r : c ⟶ d} {q : b ⟶ c} {p : a ⟶ b} {g : d ⟶ c} {h : c ⟶ b} {x : b ⟶ d} {z : a ⟶ c} {y : d ⟶ b} {w : c ⟶ a} variable [Hq : is_iso q] include Hq theorem moveR_Mp (H : y ≈ q⁻¹ ∘ g) : q ∘ y ≈ g := H⁻¹ ▹ compose_p_Vp q g theorem moveR_pM (H : w ≈ f ∘ q⁻¹) : w ∘ q ≈ f := H⁻¹ ▹ compose_pV_p f q theorem moveR_Vp (H : z ≈ q ∘ p) : q⁻¹ ∘ z ≈ p := H⁻¹ ▹ compose_V_pp q p theorem moveR_pV (H : x ≈ r ∘ q) : x ∘ q⁻¹ ≈ r := H⁻¹ ▹ compose_pp_V r q theorem moveL_Mp (H : q⁻¹ ∘ g ≈ y) : g ≈ q ∘ y := moveR_Mp (H⁻¹)⁻¹ theorem moveL_pM (H : f ∘ q⁻¹ ≈ w) : f ≈ w ∘ q := moveR_pM (H⁻¹)⁻¹ theorem moveL_Vp (H : q ∘ p ≈ z) : p ≈ q⁻¹ ∘ z := moveR_Vp (H⁻¹)⁻¹ theorem moveL_pV (H : r ∘ q ≈ x) : r ≈ x ∘ q⁻¹ := moveR_pV (H⁻¹)⁻¹ theorem moveL_1V (H : h ∘ q ≈ id) : h ≈ q⁻¹ := inverse_eq_intro_left H⁻¹ theorem moveL_V1 (H : q ∘ h ≈ id) : h ≈ q⁻¹ := inverse_eq_intro_right H⁻¹ theorem moveL_1M (H : i ∘ q⁻¹ ≈ id) : i ≈ q := moveL_1V H ⬝ inverse_involutive q theorem moveL_M1 (H : q⁻¹ ∘ i ≈ id) : i ≈ q := moveL_V1 H ⬝ inverse_involutive q theorem moveR_1M (H : id ≈ i ∘ q⁻¹) : q ≈ i := moveL_1M (H⁻¹)⁻¹ theorem moveR_M1 (H : id ≈ q⁻¹ ∘ i) : q ≈ i := moveL_M1 (H⁻¹)⁻¹ theorem moveR_1V (H : id ≈ h ∘ q) : q⁻¹ ≈ h := moveL_1V (H⁻¹)⁻¹ theorem moveR_V1 (H : id ≈ q ∘ h) : q⁻¹ ≈ h := moveL_V1 (H⁻¹)⁻¹ end end iso end morphism