/- Copyright (c) 2014-2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura, Jeremy Avigad, Floris van Doorn, Jakob von Raumer -/ prelude import init.num init.wf -- Empty type -- ---------- namespace empty protected theorem elim {A : Type} (H : empty) : A := empty.rec (λe, A) H end empty protected definition empty.has_decidable_eq [instance] : decidable_eq empty := take (a b : empty), decidable.inl (!empty.elim a) -- Unit type -- --------- namespace unit notation `⋆` := star end unit -- Sigma type -- ---------- notation `Σ` binders `, ` r:(scoped P, sigma P) := r abbreviation dpair [constructor] := @sigma.mk namespace sigma notation `⟨`:max t:(foldr `, ` (e r, mk e r)) `⟩`:0 := t --input ⟨ ⟩ as \< \> namespace ops postfix `.1`:(max+1) := pr1 postfix `.2`:(max+1) := pr2 abbreviation pr₁ := @pr1 abbreviation pr₂ := @pr2 end ops end sigma -- Sum type -- -------- namespace sum infixr ⊎ := sum infixr + := sum infixr [parsing_only] `+t`:25 := sum -- notation which is never overloaded namespace low_precedence_plus reserve infixr ` + `:25 -- conflicts with notation for addition infixr ` + ` := sum end low_precedence_plus variables {a b c d : Type} definition sum_of_sum_of_imp_of_imp (H₁ : a ⊎ b) (H₂ : a → c) (H₃ : b → d) : c ⊎ d := sum.rec_on H₁ (assume Ha : a, sum.inl (H₂ Ha)) (assume Hb : b, sum.inr (H₃ Hb)) definition sum_of_sum_of_imp_left (H₁ : a ⊎ c) (H : a → b) : b ⊎ c := sum.rec_on H₁ (assume H₂ : a, sum.inl (H H₂)) (assume H₂ : c, sum.inr H₂) definition sum_of_sum_of_imp_right (H₁ : c ⊎ a) (H : a → b) : c ⊎ b := sum.rec_on H₁ (assume H₂ : c, sum.inl H₂) (assume H₂ : a, sum.inr (H H₂)) end sum -- Product type -- ------------ abbreviation pair [constructor] := @prod.mk namespace prod -- notation for n-ary tuples notation `(` h `, ` t:(foldl `,` (e r, prod.mk r e) h) `)` := t infixr × := prod infixr [parsing_only] `×t`:30 := prod -- notation which is never overloaded namespace ops infixr [parsing_only] * := prod postfix `.1`:(max+1) := pr1 postfix `.2`:(max+1) := pr2 abbreviation pr₁ := @pr1 abbreviation pr₂ := @pr2 end ops namespace low_precedence_times reserve infixr ` * `:30 -- conflicts with notation for multiplication infixr ` * ` := prod end low_precedence_times open prod.ops definition flip [unfold 3] {A B : Type} (a : A × B) : B × A := pair (pr2 a) (pr1 a) open well_founded section variables {A B : Type} variable (Ra : A → A → Type) variable (Rb : B → B → Type) -- Lexicographical order based on Ra and Rb inductive lex : A × B → A × B → Type := | left : ∀{a₁ b₁} a₂ b₂, Ra a₁ a₂ → lex (a₁, b₁) (a₂, b₂) | right : ∀a {b₁ b₂}, Rb b₁ b₂ → lex (a, b₁) (a, b₂) -- Relational product based on Ra and Rb inductive rprod : A × B → A × B → Type := intro : ∀{a₁ b₁ a₂ b₂}, Ra a₁ a₂ → Rb b₁ b₂ → rprod (a₁, b₁) (a₂, b₂) end section parameters {A B : Type} parameters {Ra : A → A → Type} {Rb : B → B → Type} local infix `≺`:50 := lex Ra Rb definition lex.accessible {a} (aca : acc Ra a) (acb : ∀b, acc Rb b): ∀b, acc (lex Ra Rb) (a, b) := acc.rec_on aca (λxa aca (iHa : ∀y, Ra y xa → ∀b, acc (lex Ra Rb) (y, b)), λb, acc.rec_on (acb b) (λxb acb (iHb : ∀y, Rb y xb → acc (lex Ra Rb) (xa, y)), acc.intro (xa, xb) (λp (lt : p ≺ (xa, xb)), have aux : xa = xa → xb = xb → acc (lex Ra Rb) p, from @prod.lex.rec_on A B Ra Rb (λp₁ p₂ h, pr₁ p₂ = xa → pr₂ p₂ = xb → acc (lex Ra Rb) p₁) p (xa, xb) lt (λa₁ b₁ a₂ b₂ (H : Ra a₁ a₂) (eq₂ : a₂ = xa) (eq₃ : b₂ = xb), show acc (lex Ra Rb) (a₁, b₁), from have Ra₁ : Ra a₁ xa, from eq.rec_on eq₂ H, iHa a₁ Ra₁ b₁) (λa b₁ b₂ (H : Rb b₁ b₂) (eq₂ : a = xa) (eq₃ : b₂ = xb), show acc (lex Ra Rb) (a, b₁), from have Rb₁ : Rb b₁ xb, from eq.rec_on eq₃ H, have eq₂' : xa = a, from eq.rec_on eq₂ rfl, eq.rec_on eq₂' (iHb b₁ Rb₁)), aux rfl rfl))) -- The lexicographical order of well founded relations is well-founded definition lex.wf (Ha : well_founded Ra) (Hb : well_founded Rb) : well_founded (lex Ra Rb) := well_founded.intro (λp, destruct p (λa b, lex.accessible (Ha a) (well_founded.apply Hb) b)) -- Relational product is a subrelation of the lex definition rprod.sub_lex : ∀ a b, rprod Ra Rb a b → lex Ra Rb a b := λa b H, prod.rprod.rec_on H (λ a₁ b₁ a₂ b₂ H₁ H₂, lex.left Rb a₂ b₂ H₁) -- The relational product of well founded relations is well-founded definition rprod.wf (Ha : well_founded Ra) (Hb : well_founded Rb) : well_founded (rprod Ra Rb) := subrelation.wf (rprod.sub_lex) (lex.wf Ha Hb) end end prod /- logic using prod and sum -/ variables {a b c d : Type} open prod sum unit /- prod -/ definition not_prod_of_not_left (b : Type) (Hna : ¬a) : ¬(a × b) := assume H : a × b, absurd (pr1 H) Hna definition not_prod_of_not_right (a : Type) {b : Type} (Hnb : ¬b) : ¬(a × b) := assume H : a × b, absurd (pr2 H) Hnb definition prod.swap (H : a × b) : b × a := pair (pr2 H) (pr1 H) definition prod_of_prod_of_imp_of_imp (H₁ : a × b) (H₂ : a → c) (H₃ : b → d) : c × d := by cases H₁ with aa bb; exact (H₂ aa, H₃ bb) definition prod_of_prod_of_imp_left (H₁ : a × c) (H : a → b) : b × c := by cases H₁ with aa cc; exact (H aa, cc) definition prod_of_prod_of_imp_right (H₁ : c × a) (H : a → b) : c × b := by cases H₁ with cc aa; exact (cc, H aa) definition prod.comm : a × b ↔ b × a := iff.intro (λH, prod.swap H) (λH, prod.swap H) definition prod.assoc : (a × b) × c ↔ a × (b × c) := iff.intro (assume H, pair (pr1 (pr1 H)) (pair (pr2 (pr1 H)) (pr2 H))) (assume H, pair (pair (pr1 H) (pr1 (pr2 H))) (pr2 (pr2 H))) definition prod_unit (a : Type) : a × unit ↔ a := iff.intro (assume H, pr1 H) (assume H, pair H star) definition unit_prod (a : Type) : unit × a ↔ a := iff.intro (assume H, pr2 H) (assume H, pair star H) definition prod_empty (a : Type) : a × empty ↔ empty := iff.intro (assume H, pr2 H) (assume H, !empty.elim H) definition empty_prod (a : Type) : empty × a ↔ empty := iff.intro (assume H, pr1 H) (assume H, !empty.elim H) definition prod_self (a : Type) : a × a ↔ a := iff.intro (assume H, pr1 H) (assume H, pair H H) /- sum -/ definition not_sum (Hna : ¬a) (Hnb : ¬b) : ¬(a ⊎ b) := assume H : a ⊎ b, sum.rec_on H (assume Ha, absurd Ha Hna) (assume Hb, absurd Hb Hnb) definition sum_of_sum_of_imp_of_imp (H₁ : a ⊎ b) (H₂ : a → c) (H₃ : b → d) : c ⊎ d := sum.rec_on H₁ (assume Ha : a, sum.inl (H₂ Ha)) (assume Hb : b, sum.inr (H₃ Hb)) definition sum_of_sum_of_imp_left (H₁ : a ⊎ c) (H : a → b) : b ⊎ c := sum.rec_on H₁ (assume H₂ : a, sum.inl (H H₂)) (assume H₂ : c, sum.inr H₂) definition sum_of_sum_of_imp_right (H₁ : c ⊎ a) (H : a → b) : c ⊎ b := sum.rec_on H₁ (assume H₂ : c, sum.inl H₂) (assume H₂ : a, sum.inr (H H₂)) definition sum.elim3 (H : a ⊎ b ⊎ c) (Ha : a → d) (Hb : b → d) (Hc : c → d) : d := sum.rec_on H Ha (assume H₂, sum.rec_on H₂ Hb Hc) definition sum_resolve_right (H₁ : a ⊎ b) (H₂ : ¬a) : b := sum.rec_on H₁ (assume Ha, absurd Ha H₂) (assume Hb, Hb) definition sum_resolve_left (H₁ : a ⊎ b) (H₂ : ¬b) : a := sum.rec_on H₁ (assume Ha, Ha) (assume Hb, absurd Hb H₂) definition sum.swap (H : a ⊎ b) : b ⊎ a := sum.rec_on H (assume Ha, sum.inr Ha) (assume Hb, sum.inl Hb) definition sum.comm : a ⊎ b ↔ b ⊎ a := iff.intro (λH, sum.swap H) (λH, sum.swap H) definition sum.assoc : (a ⊎ b) ⊎ c ↔ a ⊎ (b ⊎ c) := iff.intro (assume H, sum.rec_on H (assume H₁, sum.rec_on H₁ (assume Ha, sum.inl Ha) (assume Hb, sum.inr (sum.inl Hb))) (assume Hc, sum.inr (sum.inr Hc))) (assume H, sum.rec_on H (assume Ha, (sum.inl (sum.inl Ha))) (assume H₁, sum.rec_on H₁ (assume Hb, sum.inl (sum.inr Hb)) (assume Hc, sum.inr Hc))) definition sum_unit (a : Type) : a ⊎ unit ↔ unit := iff.intro (assume H, star) (assume H, sum.inr H) definition unit_sum (a : Type) : unit ⊎ a ↔ unit := iff.intro (assume H, star) (assume H, sum.inl H) definition sum_empty (a : Type) : a ⊎ empty ↔ a := iff.intro (assume H, sum.rec_on H (assume H1 : a, H1) (assume H1 : empty, !empty.elim H1)) (assume H, sum.inl H) definition empty_sum (a : Type) : empty ⊎ a ↔ a := iff.intro (assume H, sum.rec_on H (assume H1 : empty, !empty.elim H1) (assume H1 : a, H1)) (assume H, sum.inr H) definition sum_self (a : Type) : a ⊎ a ↔ a := iff.intro (assume H, sum.rec_on H (assume H1, H1) (assume H1, H1)) (assume H, sum.inl H)