/* Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura */ #include "util/interrupt.h" #include "util/lbool.h" #include "kernel/converter.h" #include "kernel/expr_maps.h" #include "kernel/instantiate.h" #include "kernel/free_vars.h" #include "kernel/type_checker.h" namespace lean { static no_delayed_justification g_no_delayed_jst; bool converter::is_def_eq(expr const & t, expr const & s, type_checker & c) { return is_def_eq(t, s, c, g_no_delayed_jst); } /** \brief Do nothing converter */ struct dummy_converter : public converter { virtual expr whnf(expr const & e, type_checker &) { return e; } virtual bool is_def_eq(expr const &, expr const &, type_checker &, delayed_justification &) { return true; } }; std::unique_ptr mk_dummy_converter() { return std::unique_ptr(new dummy_converter()); } name converter::mk_fresh_name(type_checker & tc) { return tc.mk_fresh_name(); } expr converter::infer_type(type_checker & tc, expr const & e) { return tc.infer_type(e); } void converter::add_cnstr(type_checker & tc, constraint const & c) { return tc.add_cnstr(c); } extension_context & converter::get_extension(type_checker & tc) { return tc.get_extension(); } struct default_converter : public converter { environment m_env; optional m_module_idx; bool m_memoize; name_set m_extra_opaque; expr_struct_map m_whnf_core_cache; expr_struct_map m_whnf_cache; default_converter(environment const & env, optional mod_idx, bool memoize, name_set const & extra_opaque): m_env(env), m_module_idx(mod_idx), m_memoize(memoize), m_extra_opaque(extra_opaque) {} optional expand_macro(expr const & m, type_checker & c) { lean_assert(is_macro(m)); return macro_def(m).expand(m, get_extension(c)); } /** \brief Apply normalizer extensions to \c e. */ optional norm_ext(expr const & e, type_checker & c) { return m_env.norm_ext()(e, get_extension(c)); } /** \brief Try to apply eta-reduction to \c e. */ expr try_eta(expr const & e) { lean_assert(is_lambda(e)); expr const & b = binding_body(e); if (is_lambda(b)) { expr new_b = try_eta(b); if (is_eqp(b, new_b)) { return e; } else if (is_app(new_b) && is_var(app_arg(new_b), 0) && !has_free_var(app_fn(new_b), 0)) { return lower_free_vars(app_fn(new_b), 1); } else { return update_binding(e, binding_domain(e), new_b); } } else if (is_app(b) && is_var(app_arg(b), 0) && !has_free_var(app_fn(b), 0)) { return lower_free_vars(app_fn(b), 1); } else { return e; } } /** \brief Weak head normal form core procedure. It does not perform delta reduction nor normalization extensions. */ expr whnf_core(expr const & e, type_checker & c) { check_system("whnf"); // handle easy cases switch (e.kind()) { case expr_kind::Var: case expr_kind::Sort: case expr_kind::Meta: case expr_kind::Local: case expr_kind::Pi: case expr_kind::Constant: return e; case expr_kind::Lambda: case expr_kind::Macro: case expr_kind::Let: case expr_kind::App: break; } // check cache if (m_memoize) { auto it = m_whnf_core_cache.find(e); if (it != m_whnf_core_cache.end()) return it->second; } // do the actual work expr r; switch (e.kind()) { case expr_kind::Var: case expr_kind::Sort: case expr_kind::Meta: case expr_kind::Local: case expr_kind::Pi: case expr_kind::Constant: lean_unreachable(); // LCOV_EXCL_LINE case expr_kind::Lambda: r = (m_env.eta()) ? try_eta(e) : e; break; case expr_kind::Macro: if (auto m = expand_macro(e, c)) r = whnf_core(*m, c); else r = e; break; case expr_kind::Let: r = whnf_core(instantiate(let_body(e), let_value(e)), c); break; case expr_kind::App: { buffer args; expr f0 = get_app_rev_args(e, args); expr f = whnf_core(f0, c); if (is_lambda(f)) { unsigned m = 1; unsigned num_args = args.size(); while (is_lambda(binding_body(f)) && m < num_args) { f = binding_body(f); m++; } lean_assert(m <= num_args); r = whnf_core(mk_rev_app(instantiate(binding_body(f), m, args.data() + (num_args - m)), num_args - m, args.data()), c); } else { r = is_eqp(f, f0) ? e : mk_rev_app(f, args.size(), args.data()); } break; }} if (m_memoize) m_whnf_core_cache.insert(mk_pair(e, r)); return r; } /** \brief Predicate for deciding whether \c d is an opaque definition or not. Here is the basic idea: 1) Each definition has an opaque flag. This flag cannot be modified after a definition is added to the environment. The opaque flag affects the convertability check. The idea is to minimize the number of delta-reduction steps. We also believe it increases the modularity of Lean developments by minimizing the dependency on how things are defined. We should view non-opaque definitions as "inline definitions" used in programming languages such as C++. 2) Whenever type checking an expression, the user can provide an additional set of definition names (m_extra_opaque) that should be considered opaque. Note that, if \c t type checks when using an extra_opaque set S, then t also type checks (modulo resource constraints) with the empty set. Again, the purpose of extra_opaque is to mimimize the number of delta-reduction steps. 3) To be able to prove theorems about an opaque definition, we treat an opaque definition D in a module M as transparent when we are type checking another definition/theorem D' also in M. This rule only applies if D is not a theorem, nor D is in the set m_extra_opaque. To implement this feature, this class has a field m_module_idx that is not none when this rule should be applied. */ bool is_opaque(declaration const & d) const { lean_assert(d.is_definition()); if (d.is_theorem()) return true; // theorems are always opaque if (m_extra_opaque.contains(d.get_name())) return true; // extra_opaque set overrides opaque flag if (!d.is_opaque()) return false; // d is a transparent definition if (m_module_idx && d.get_module_idx() == *m_module_idx) return false; // the opaque definitions in module_idx are considered transparent return true; // d is opaque } /** \brief Expand \c e if it is non-opaque constant with weight >= w */ expr unfold_name_core(expr e, unsigned w) { if (is_constant(e)) { if (auto d = m_env.find(const_name(e))) { if (d->is_definition() && !is_opaque(*d) && d->get_weight() >= w) return unfold_name_core(instantiate_params(d->get_value(), d->get_univ_params(), const_levels(e)), w); } } return e; } /** \brief Expand constants and application where the function is a constant. The unfolding is only performend if the constant corresponds to a non-opaque definition with weight >= w. */ expr unfold_names(expr const & e, unsigned w) { if (is_app(e)) { expr f0 = get_app_fn(e); expr f = unfold_name_core(f0, w); if (is_eqp(f, f0)) { return e; } else { buffer args; get_app_rev_args(e, args); return mk_rev_app(f, args); } } else { return unfold_name_core(e, w); } } /** \brief Auxiliary method for \c is_delta */ optional is_delta_core(expr const & e) { if (is_constant(e)) { if (auto d = m_env.find(const_name(e))) if (d->is_definition() && !is_opaque(*d)) return d; } return none_declaration(); } /** \brief Return some definition \c d iff \c e is a target for delta-reduction, and the given definition is the one to be expanded. */ optional is_delta(expr const & e) { return is_delta_core(get_app_fn(e)); } /** \brief Weak head normal form core procedure that perform delta reduction for non-opaque constants with weight greater than or equal to \c w. This method is based on whnf_core(expr const &) and \c unfold_names. \remark This method does not use normalization extensions attached in the environment. */ expr whnf_core(expr e, unsigned w, type_checker & c) { while (true) { expr new_e = unfold_names(whnf_core(e, c), w); if (is_eqp(e, new_e)) return e; e = new_e; } } /** \brief Put expression \c t in weak head normal form */ virtual expr whnf(expr const & e_prime, type_checker & c) { expr e = e_prime; // check cache if (m_memoize) { auto it = m_whnf_cache.find(e); if (it != m_whnf_cache.end()) return it->second; } expr t = e; while (true) { expr t1 = whnf_core(t, 0, c); auto new_t = norm_ext(t1, c); if (new_t) { t = *new_t; } else { if (m_memoize) m_whnf_cache.insert(mk_pair(e, t1)); return t1; } } } /** \brief Given lambda/Pi expressions \c t and \c s, return true iff \c t is def eq to \c s. t and s are definitionally equal iff domain(t) is definitionally equal to domain(s) and body(t) is definitionally equal to body(s) */ bool is_def_eq_binding(expr t, expr s, type_checker & c, delayed_justification & jst) { lean_assert(t.kind() == s.kind()); lean_assert(is_binding(t)); expr_kind k = t.kind(); buffer subst; do { expr var_t_type = instantiate_rev(binding_domain(t), subst.size(), subst.data()); expr var_s_type = instantiate_rev(binding_domain(s), subst.size(), subst.data()); if (!is_def_eq(var_t_type, var_s_type, c, jst)) return false; subst.push_back(mk_local(mk_fresh_name(c), binding_name(s), var_s_type)); t = binding_body(t); s = binding_body(s); } while (t.kind() == k && s.kind() == k); return is_def_eq(instantiate_rev(t, subst.size(), subst.data()), instantiate_rev(s, subst.size(), subst.data()), c, jst); } /** \brief This is an auxiliary method for is_def_eq. It handles the "easy cases". */ lbool quick_is_def_eq(expr const & t, expr const & s, type_checker & c, delayed_justification & jst) { if (t == s) return l_true; // t and s are structurally equal if (is_meta(t) || is_meta(s)) { // if t or s is a metavariable (or the application of a metavariable), then add constraint add_cnstr(c, mk_eq_cnstr(t, s, jst.get())); return l_true; } if (t.kind() == s.kind()) { switch (t.kind()) { case expr_kind::Lambda: case expr_kind::Pi: return to_lbool(is_def_eq_binding(t, s, c, jst)); case expr_kind::Sort: // t and s are Sorts if (is_equivalent(sort_level(t), sort_level(s))) { return l_true; } else if (has_meta(sort_level(t)) || has_meta(sort_level(s))) { add_cnstr(c, mk_level_eq_cnstr(sort_level(t), sort_level(s), jst.get())); return l_true; } else { return l_false; } case expr_kind::Meta: lean_unreachable(); // LCOV_EXCL_LINE case expr_kind::Var: case expr_kind::Local: case expr_kind::App: case expr_kind::Constant: case expr_kind::Macro: case expr_kind::Let: // We do not handle these cases in this method. break; } } return l_undef; // This is not an "easy case" } /** \brief Return true if arguments of \c t are definitionally equal to arguments of \c s. This method is used to implement an optimization in the method \c is_def_eq. */ bool is_def_eq_args(expr t, expr s, type_checker & c, delayed_justification & jst) { while (is_app(t) && is_app(s)) { if (!is_def_eq(app_arg(t), app_arg(s), c, jst)) return false; t = app_fn(t); s = app_fn(s); } return !is_app(t) && !is_app(s); } /** \brief Return true iff t is a constant named f_name or an application of the form (f_name a_1 ... a_k) */ bool is_app_of(expr t, name const & f_name) { t = get_app_fn(t); return is_constant(t) && const_name(t) == f_name; } /** Return true iff t is definitionally equal to s. */ virtual bool is_def_eq(expr const & t, expr const & s, type_checker & c, delayed_justification & jst) { check_system("is_definitionally_equal"); lbool r = quick_is_def_eq(t, s, c, jst); if (r != l_undef) return r == l_true; // apply whnf (without using delta-reduction or normalizer extensions) expr t_n = whnf_core(t, c); expr s_n = whnf_core(s, c); if (!is_eqp(t_n, t) || !is_eqp(s_n, s)) { r = quick_is_def_eq(t_n, s_n, c, jst); if (r != l_undef) return r == l_true; } // lazy delta-reduction and then normalizer extensions while (true) { // first, keep applying lazy delta-reduction while applicable while (true) { auto d_t = is_delta(t_n); auto d_s = is_delta(s_n); if (!d_t && !d_s) { break; } else if (d_t && !d_s) { t_n = whnf_core(unfold_names(t_n, 0), c); } else if (!d_t && d_s) { s_n = whnf_core(unfold_names(s_n, 0), c); } else if (d_t->get_weight() > d_s->get_weight()) { t_n = whnf_core(unfold_names(t_n, d_s->get_weight() + 1), c); } else if (d_t->get_weight() < d_s->get_weight()) { s_n = whnf_core(unfold_names(s_n, d_t->get_weight() + 1), c); } else { lean_assert(d_t && d_s && d_t->get_weight() == d_s->get_weight()); // If t_n and s_n are both applications of the same (non-opaque) definition, // then we try to check if their arguments are definitionally equal. // If they are, then t_n and s_n must be definitionally equal, and we can // skip the delta-reduction step. // We only apply the optimization if t_n and s_n do not contain metavariables. // In this way we don't have to backtrack constraints if the optimization fail. if (is_app(t_n) && is_app(s_n) && is_eqp(*d_t, *d_s) && // same definition !has_metavar(t_n) && !has_metavar(s_n) && !is_opaque(*d_t) && // if d_t is opaque, we don't need to try this optimization d_t->use_conv_opt() && // the flag use_conv_opt() can be used to disable this optimization is_def_eq_args(t_n, s_n, c, jst)) { return true; } t_n = whnf_core(unfold_names(t_n, d_t->get_weight() - 1), c); s_n = whnf_core(unfold_names(s_n, d_s->get_weight() - 1), c); } r = quick_is_def_eq(t_n, s_n, c, jst); if (r != l_undef) return r == l_true; } // try normalizer extensions auto new_t_n = norm_ext(t_n, c); auto new_s_n = norm_ext(s_n, c); if (!new_t_n && !new_s_n) break; // t_n and s_n are in weak head normal form if (new_t_n) t_n = whnf_core(*new_t_n, c); if (new_s_n) s_n = whnf_core(*new_s_n, c); r = quick_is_def_eq(t_n, s_n, c, jst); if (r != l_undef) return r == l_true; } // At this point, t_n and s_n are in weak head normal form (modulo meta-variables and proof irrelevance) if (is_app(t_n) && is_app(s_n)) { type_checker::scope scope(c); buffer t_args; buffer s_args; expr t_fn = get_app_args(t_n, t_args); expr s_fn = get_app_args(s_n, s_args); if (t_fn == s_fn && t_args.size() == s_args.size()) { unsigned i = 0; for (; i < t_args.size(); i++) { if (!is_def_eq(t_args[i], s_args[i], c, jst)) break; } if (i == t_args.size()) { scope.keep(); return true; } } } if (m_env.prop_proof_irrel()) { // Proof irrelevance support for Prop/Bool (aka Type.{0}) type_checker::scope scope(c); expr t_type = infer_type(c, t); if (is_prop(t_type, c) && is_def_eq(t_type, infer_type(c, s), c, jst)) { scope.keep(); return true; } } list const & cls_proof_irrel = m_env.cls_proof_irrel(); if (!is_nil(cls_proof_irrel)) { // Proof irrelevance support for classes type_checker::scope scope(c); expr t_type = whnf(infer_type(c, t), c); if (std::any_of(cls_proof_irrel.begin(), cls_proof_irrel.end(), [&](name const & cls_name) { return is_app_of(t_type, cls_name); }) && is_def_eq(t_type, infer_type(c, s), c, jst)) { scope.keep(); return true; } } return false; } bool is_prop(expr const & e, type_checker & c) { return whnf(infer_type(c, e), c) == Bool; } }; std::unique_ptr mk_default_converter(environment const & env, optional mod_idx, bool memoize, name_set const & extra_opaque) { return std::unique_ptr(new default_converter(env, mod_idx, memoize, extra_opaque)); } }