---------------------------------------------------------------------------------------------------- -- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura ---------------------------------------------------------------------------------------------------- import logic.classes.inhabited logic.connectives.eq namespace pair inductive pair (A B : Type) : Type := | mk_pair : A → B → pair A B section thms parameters {A B : Type} definition fst [inline] (p : pair A B) := pair_rec (λ x y, x) p definition snd [inline] (p : pair A B) := pair_rec (λ x y, y) p theorem pair_inhabited (H1 : inhabited A) (H2 : inhabited B) : inhabited (pair A B) := inhabited_elim H1 (λ a, inhabited_elim H2 (λ b, inhabited_intro (mk_pair a b))) theorem fst_mk_pair (a : A) (b : B) : fst (mk_pair a b) = a := refl a theorem snd_mk_pair (a : A) (b : B) : snd (mk_pair a b) = b := refl b theorem pair_ext (p : pair A B) : mk_pair (fst p) (snd p) = p := pair_rec (λ x y, refl (mk_pair x y)) p theorem pair_ext_eq {p1 p2 : pair A B} (H1 : fst p1 = fst p2) (H2 : snd p1 = snd p2) : p1 = p2 := calc p1 = mk_pair (fst p1) (snd p1) : symm (pair_ext p1) ... = mk_pair (fst p2) (snd p1) : {H1} ... = mk_pair (fst p2) (snd p2) : {H2} ... = p2 : pair_ext p2 end thms instance pair_inhabited precedence `×`:30 infixr × := pair -- notation for n-ary tuples notation `(` h `,` t:(foldl `,` (e r, mk_pair r e) h) `)` := t end pair