---------------------------------------------------------------------------------------------------- -- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura ---------------------------------------------------------------------------------------------------- import logic.connectives.eq logic.connectives.function using function -- Function extensionality axiom funext : ∀ {A : Type} {B : A → Type} {f g : Π x, B x} (H : ∀ x, f x = g x), f = g namespace function section parameters {A B C D: Type} theorem compose_assoc (f : C → D) (g : B → C) (h : A → B) : (f ∘ g) ∘ h = f ∘ (g ∘ h) := funext (take x, refl _) theorem compose_id_left (f : A → B) : id ∘ f = f := funext (take x, refl _) theorem compose_id_right (f : A → B) : f ∘ id = f := funext (take x, refl _) theorem compose_const_right (f : B → C) (b : B) : f ∘ (const A b) = const A (f b) := funext (take x, refl _) end end function