---------------------------------------------------------------------------------------------------- -- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura ---------------------------------------------------------------------------------------------------- import logic.core.inhabited data.bool general_notation open bool -- pos_num and num are two auxiliary datatypes used when parsing numerals such as 13, 0, 26. -- The parser will generate the terms (pos (bit1 (bit1 (bit0 one)))), zero, and (pos (bit0 (bit1 (bit1 one)))). -- This representation can be coerced in whatever we want (e.g., naturals, integers, reals, etc). inductive pos_num : Type := one : pos_num, bit1 : pos_num → pos_num, bit0 : pos_num → pos_num definition pos_num.is_inhabited [instance] : inhabited pos_num := inhabited.mk pos_num.one namespace pos_num protected theorem induction_on {P : pos_num → Prop} (a : pos_num) (H₁ : P one) (H₂ : ∀ (n : pos_num), P n → P (bit1 n)) (H₃ : ∀ (n : pos_num), P n → P (bit0 n)) : P a := rec H₁ H₂ H₃ a protected definition rec_on {P : pos_num → Type} (a : pos_num) (H₁ : P one) (H₂ : ∀ (n : pos_num), P n → P (bit1 n)) (H₃ : ∀ (n : pos_num), P n → P (bit0 n)) : P a := rec H₁ H₂ H₃ a definition succ (a : pos_num) : pos_num := rec_on a (bit0 one) (λn r, bit0 r) (λn r, bit1 n) definition is_one (a : pos_num) : bool := rec_on a tt (λn r, ff) (λn r, ff) definition pred (a : pos_num) : pos_num := rec_on a one (λn r, bit0 n) (λn r, cond (is_one n) one (bit1 r)) definition size (a : pos_num) : pos_num := rec_on a one (λn r, succ r) (λn r, succ r) theorem succ_not_is_one {a : pos_num} : is_one (succ a) = ff := induction_on a rfl (take n iH, rfl) (take n iH, rfl) theorem pred_succ {a : pos_num} : pred (succ a) = a := rec_on a rfl (take (n : pos_num) (iH : pred (succ n) = n), calc pred (succ (bit1 n)) = cond ff one (bit1 (pred (succ n))) : {succ_not_is_one} ... = bit1 (pred (succ n)) : rfl ... = bit1 n : {iH}) (take (n : pos_num) (iH : pred (succ n) = n), rfl) definition add (a b : pos_num) : pos_num := rec_on a succ (λn f b, rec_on b (succ (bit1 n)) (λm r, succ (bit1 (f m))) (λm r, bit1 (f m))) (λn f b, rec_on b (bit1 n) (λm r, bit1 (f m)) (λm r, bit0 (f m))) b infixl `+` := add theorem add_one_one : one + one = bit0 one := rfl theorem add_one_bit0 {a : pos_num} : one + (bit0 a) = bit1 a := rfl theorem add_one_bit1 {a : pos_num} : one + (bit1 a) = succ (bit1 a) := rfl theorem add_bit0_one {a : pos_num} : (bit0 a) + one = bit1 a := rfl theorem add_bit1_one {a : pos_num} : (bit1 a) + one = succ (bit1 a) := rfl theorem add_bit0_bit0 {a b : pos_num} : (bit0 a) + (bit0 b) = bit0 (a + b) := rfl theorem add_bit0_bit1 {a b : pos_num} : (bit0 a) + (bit1 b) = bit1 (a + b) := rfl theorem add_bit1_bit0 {a b : pos_num} : (bit1 a) + (bit0 b) = bit1 (a + b) := rfl theorem add_bit1_bit1 {a b : pos_num} : (bit1 a) + (bit1 b) = succ (bit1 (a + b)) := rfl definition mul (a b : pos_num) : pos_num := rec_on a b (λn r, bit0 r + b) (λn r, bit0 r) infixl `*` := mul theorem mul_one_left (a : pos_num) : one * a = a := rfl theorem mul_one_right (a : pos_num) : a * one = a := induction_on a rfl (take (n : pos_num) (iH : n * one = n), calc bit1 n * one = bit0 (n * one) + one : rfl ... = bit0 n + one : {iH} ... = bit1 n : add_bit0_one) (take (n : pos_num) (iH : n * one = n), calc bit0 n * one = bit0 (n * one) : rfl ... = bit0 n : {iH}) end pos_num inductive num : Type := zero : num, pos : pos_num → num definition num.is_inhabited [instance] : inhabited num := inhabited.mk num.zero namespace num open pos_num protected theorem induction_on {P : num → Prop} (a : num) (H₁ : P zero) (H₂ : ∀ (p : pos_num), P (pos p)) : P a := rec H₁ H₂ a protected definition rec_on {P : num → Type} (a : num) (H₁ : P zero) (H₂ : ∀ (p : pos_num), P (pos p)) : P a := rec H₁ H₂ a definition succ (a : num) : num := rec_on a (pos one) (λp, pos (succ p)) definition pred (a : num) : num := rec_on a zero (λp, cond (is_one p) zero (pos (pred p))) definition size (a : num) : num := rec_on a (pos one) (λp, pos (size p)) theorem pred_succ (a : num) : pred (succ a) = a := rec_on a rfl (λp, calc pred (succ (pos p)) = pred (pos (pos_num.succ p)) : rfl ... = cond ff zero (pos (pos_num.pred (pos_num.succ p))) : {succ_not_is_one} ... = pos (pos_num.pred (pos_num.succ p)) : cond_ff _ _ ... = pos p : {pos_num.pred_succ}) definition add (a b : num) : num := rec_on a b (λp_a, rec_on b (pos p_a) (λp_b, pos (pos_num.add p_a p_b))) definition mul (a b : num) : num := rec_on a zero (λp_a, rec_on b zero (λp_b, pos (pos_num.mul p_a p_b))) infixl `+` := add infixl `*` := mul end num