/- Copyright (c) 2014 Jeremy Avigad. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: algebra.ordered_group Authors: Jeremy Avigad Partially ordered additive groups. Modeled on Isabelle's library. The comments below indicate that we could refine the structures, though we would have to declare more inheritance paths. -/ import logic.eq logic.connectives import data.unit data.sigma data.prod import algebra.function algebra.binary import algebra.group algebra.order open eq eq.ops -- note: ⁻¹ will be overloaded namespace algebra variable {A : Type} structure ordered_cancel_comm_monoid [class] (A : Type) extends add_comm_monoid A, add_left_cancel_semigroup A, add_right_cancel_semigroup A, order_pair A := (add_le_left : ∀a b c, le a b → le (add c a) (add c b)) (add_le_left_cancel : ∀a b c, le (add c a) (add c b) → le a b) section variables [s : ordered_cancel_comm_monoid A] (a b c d e : A) include s theorem add_le_left {a b : A} (H : a ≤ b) (c : A) : c + a ≤ c + b := !ordered_cancel_comm_monoid.add_le_left H theorem add_le_right {a b : A} (H : a ≤ b) (c : A) : a + c ≤ b + c := (add_comm c a) ▸ (add_comm c b) ▸ (add_le_left H c) theorem add_le {a b c d : A} (Hab : a ≤ b) (Hcd : c ≤ d) : a + c ≤ b + d := le_trans (add_le_right Hab c) (add_le_left Hcd b) theorem add_lt_left {a b : A} (H : a < b) (c : A) : c + a < c + b := have H1 : c + a ≤ c + b, from add_le_left (lt_imp_le H) c, have H2 : c + a ≠ c + b, from take H3 : c + a = c + b, have H4 : a = b, from add_left_cancel H3, lt_imp_ne H H4, le_ne_imp_lt H1 H2 theorem add_lt_right {a b : A} (H : a < b) (c : A) : a + c < b + c := (add_comm c a) ▸ (add_comm c b) ▸ (add_lt_left H c) theorem add_lt {a b c d : A} (Hab : a < b) (Hcd : c < d) : a + c < b + d := lt_trans (add_lt_right Hab c) (add_lt_left Hcd b) theorem add_le_lt {a b c d : A} (Hab : a ≤ b) (Hcd : c < d) : a + c < b + d := le_lt_trans (add_le_right Hab c) (add_lt_left Hcd b) theorem add_lt_le {a b c d : A} (Hab : a < b) (Hcd : c ≤ d) : a + c < b + d := lt_le_trans (add_lt_right Hab c) (add_le_left Hcd b) -- here we start using add_le_left_cancel. theorem add_le_left_cancel {a b c : A} (H : a + b ≤ a + c) : b ≤ c := !ordered_cancel_comm_monoid.add_le_left_cancel H theorem add_le_right_cancel {a b c : A} (H : a + b ≤ c + b) : a ≤ c := add_le_left_cancel ((add_comm a b) ▸ (add_comm c b) ▸ H) theorem add_lt_left_cancel {a b c : A} (H : a + b < a + c) : b < c := have H1 : b ≤ c, from add_le_left_cancel (lt_imp_le H), have H2 : b ≠ c, from assume H3 : b = c, lt_irrefl _ (H3 ▸ H), le_ne_imp_lt H1 H2 theorem add_lt_right_cancel {a b c : A} (H : a + b < c + b) : a < c := add_lt_left_cancel ((add_comm a b) ▸ (add_comm c b) ▸ H) theorem add_le_left_iff : a + b ≤ a + c ↔ b ≤ c := iff.intro add_le_left_cancel (assume H, add_le_left H _) theorem add_le_right_iff : a + b ≤ c + b ↔ a ≤ c := iff.intro add_le_right_cancel (assume H, add_le_right H _) theorem add_lt_left_iff : a + b < a + c ↔ b < c := iff.intro add_lt_left_cancel (assume H, add_lt_left H _) theorem add_lt_right_iff : a + b < c + b ↔ a < c := iff.intro add_lt_right_cancel (assume H, add_lt_right H _) -- here we start using properties of zero. theorem add_nonneg_nonneg {a b : A} (Ha : 0 ≤ a) (Hb : 0 ≤ b) : 0 ≤ a + b := !add_left_id ▸ (add_le Ha Hb) theorem add_pos_nonneg {a b : A} (Ha : 0 < a) (Hb : 0 ≤ b) : 0 < a + b := !add_left_id ▸ (add_lt_le Ha Hb) theorem add_nonneg_pos {a b : A} (Ha : 0 ≤ a) (Hb : 0 < b) : 0 < a + b := !add_left_id ▸ (add_le_lt Ha Hb) theorem add_pos_pos {a b : A} (Ha : 0 < a) (Hb : 0 < b) : 0 < a + b := !add_left_id ▸ (add_lt Ha Hb) theorem add_nonpos_nonpos {a b : A} (Ha : a ≤ 0) (Hb : b ≤ 0) : a + b ≤ 0 := !add_left_id ▸ (add_le Ha Hb) calc_trans le_eq_trans theorem add_neg_nonpos {a b : A} (Ha : a < 0) (Hb : b ≤ 0) : a + b < 0 := !add_left_id ▸ (add_lt_le Ha Hb) theorem add_nonpos_neg {a b : A} (Ha : a ≤ 0) (Hb : b < 0) : a + b < 0 := !add_left_id ▸ (add_le_lt Ha Hb) theorem add_neg_neg {a b : A} (Ha : a < 0) (Hb : b < 0) : a + b < 0 := !add_left_id ▸ (add_lt Ha Hb) -- TODO: add nonpos version (will be easier with simplifier) theorem add_nonneg_eq_zero_iff {a b : A} (Ha : 0 ≤ a) (Hb : 0 ≤ b) : a + b = 0 ↔ a = 0 ∧ b = 0 := iff.intro (assume Hab : a + b = 0, have Ha' : a ≤ 0, from calc a = a + 0 : add_right_id ... ≤ a + b : add_le_left Hb ... = 0 : Hab, have Haz : a = 0, from le_antisym Ha' Ha, have Hb' : b ≤ 0, from calc b = 0 + b : add_left_id ... ≤ a + b : add_le_right Ha ... = 0 : Hab, have Hbz : b = 0, from le_antisym Hb' Hb, and.intro Haz Hbz) (assume Hab : a = 0 ∧ b = 0, (and.elim_left Hab)⁻¹ ▸ (and.elim_right Hab)⁻¹ ▸ (add_right_id 0)) theorem le_add_nonneg (Ha : 0 ≤ a) (Hbc : b ≤ c) : b ≤ a + c := !add_left_id ▸ add_le Ha Hbc theorem le_nonneg_add (Ha : 0 ≤ a) (Hbc : b ≤ c) : b ≤ c + a := !add_right_id ▸ add_le Hbc Ha theorem le_add_pos (Ha : 0 < a) (Hbc : b ≤ c) : b < a + c := !add_left_id ▸ add_lt_le Ha Hbc theorem le_pos_add (Ha : 0 < a) (Hbc : b ≤ c) : b < c + a := !add_right_id ▸ add_le_lt Hbc Ha theorem le_add_nonpos (Ha : a ≤ 0) (Hbc : b ≤ c) : a + b ≤ c := !add_left_id ▸ add_le Ha Hbc theorem le_nonpos_add (Ha : a ≤ 0) (Hbc : b ≤ c) : b + a ≤ c := !add_right_id ▸ add_le Hbc Ha theorem le_add_neg (Ha : a < 0) (Hbc : b ≤ c) : a + b < c := !add_left_id ▸ add_lt_le Ha Hbc theorem le_neg_add (Ha : a < 0) (Hbc : b ≤ c) : b + a < c := !add_right_id ▸ add_le_lt Hbc Ha theorem lt_add_nonneg (Ha : 0 ≤ a) (Hbc : b < c) : b < a + c := !add_left_id ▸ add_le_lt Ha Hbc theorem lt_nonneg_add (Ha : 0 ≤ a) (Hbc : b < c) : b < c + a := !add_right_id ▸ add_lt_le Hbc Ha theorem lt_add_pos (Ha : 0 < a) (Hbc : b < c) : b < a + c := !add_left_id ▸ add_lt Ha Hbc theorem lt_pos_add (Ha : 0 < a) (Hbc : b < c) : b < c + a := !add_right_id ▸ add_lt Hbc Ha theorem lt_add_nonpos (Ha : a ≤ 0) (Hbc : b < c) : a + b < c := !add_left_id ▸ add_le_lt Ha Hbc theorem lt_nonpos_add (Ha : a ≤ 0) (Hbc : b < c) : b + a < c := !add_right_id ▸ add_lt_le Hbc Ha theorem lt_add_neg (Ha : a < 0) (Hbc : b < c) : a + b < c := !add_left_id ▸ add_lt Ha Hbc theorem lt_neg_add (Ha : a < 0) (Hbc : b < c) : b + a < c := !add_right_id ▸ add_lt Hbc Ha end -- TODO: there is more we can do if we have max and min (in order.lean as well) -- TODO: there is more we can do if we assume a ≤ b ↔ ∃c. a + c = b, but it is not clear whether -- this gives us any useful generality structure ordered_comm_group [class] (A : Type) extends add_comm_group A, order_pair A := (add_le_left : ∀a b c, le a b → le (add c a) (add c b)) definition ordered_comm_group.to_ordered_cancel_comm_monoid [instance] (A : Type) [s : ordered_comm_group A] : ordered_cancel_comm_monoid A := ordered_cancel_comm_monoid.mk has_add.add add_assoc has_zero.zero add_left_id add_right_id add_comm (@add_left_cancel _ _) (@add_right_cancel _ _) has_le.le le_refl (@le_trans _ _) (@le_antisym _ _) has_lt.lt (@lt_iff_le_ne _ _) ordered_comm_group.add_le_left proof take a b c : A, assume H : c + a ≤ c + b, have H' : -c + (c + a) ≤ -c + (c + b), from ordered_comm_group.add_le_left _ _ _ H, !neg_add_cancel_left ▸ !neg_add_cancel_left ▸ H' qed end algebra