open bool nat open function inductive univ := | ubool : univ | unat : univ | uarrow : univ → univ → univ open univ definition interp : univ → Type₁ | ubool := bool | unat := nat | (uarrow fr to) := interp fr → interp to definition foo : Π (u : univ) (el : interp u), interp u | ubool tt := ff | ubool ff := tt | unat n := succ n | (uarrow fr to) f := λ x : interp fr, f (foo fr x) definition is_even : nat → bool | zero := tt | (succ n) := bnot (is_even n) example : foo unat 10 = 11 := rfl example : foo ubool tt = ff := rfl example : foo (uarrow unat ubool) (λ x : nat, is_even x) 3 = tt := rfl example : foo (uarrow unat ubool) (λ x : nat, is_even x) 4 = ff := rfl