---------------------------------------------------------------------------------------------------- -- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura ---------------------------------------------------------------------------------------------------- import logic.connectives.basic logic.connectives.eq namespace decidable inductive decidable (p : Prop) : Type := | inl : p → decidable p | inr : ¬p → decidable p theorem decidable_true [instance] : decidable true := inl trivial theorem decidable_false [instance] : decidable false := inr not_false_trivial theorem induction_on {p : Prop} {C : Prop} (H : decidable p) (H1 : p → C) (H2 : ¬p → C) : C := decidable_rec H1 H2 H definition rec_on [inline] {p : Prop} {C : Type} (H : decidable p) (H1 : p → C) (H2 : ¬p → C) : C := decidable_rec H1 H2 H theorem irrelevant {p : Prop} (d1 d2 : decidable p) : d1 = d2 := decidable_rec (assume Hp1 : p, decidable_rec (assume Hp2 : p, congr_arg inl (refl Hp1)) -- using proof irrelevance for Prop (assume Hnp2 : ¬p, absurd_elim (inl Hp1 = inr Hnp2) Hp1 Hnp2) d2) (assume Hnp1 : ¬p, decidable_rec (assume Hp2 : p, absurd_elim (inr Hnp1 = inl Hp2) Hp2 Hnp1) (assume Hnp2 : ¬p, congr_arg inr (refl Hnp1)) -- using proof irrelevance for Prop d2) d1 theorem em (p : Prop) {H : decidable p} : p ∨ ¬p := induction_on H (λ Hp, or_inl Hp) (λ Hnp, or_inr Hnp) theorem by_contradiction {p : Prop} {Hp : decidable p} (H : ¬p → false) : p := or_elim (em p) (assume H1 : p, H1) (assume H1 : ¬p, false_elim p (H H1)) theorem decidable_and [instance] {a b : Prop} (Ha : decidable a) (Hb : decidable b) : decidable (a ∧ b) := rec_on Ha (assume Ha : a, rec_on Hb (assume Hb : b, inl (and_intro Ha Hb)) (assume Hnb : ¬b, inr (and_not_right a Hnb))) (assume Hna : ¬a, inr (and_not_left b Hna)) theorem decidable_or [instance] {a b : Prop} (Ha : decidable a) (Hb : decidable b) : decidable (a ∨ b) := rec_on Ha (assume Ha : a, inl (or_inl Ha)) (assume Hna : ¬a, rec_on Hb (assume Hb : b, inl (or_inr Hb)) (assume Hnb : ¬b, inr (or_not_intro Hna Hnb))) theorem decidable_not [instance] {a : Prop} (Ha : decidable a) : decidable (¬a) := rec_on Ha (assume Ha, inr (not_not_intro Ha)) (assume Hna, inl Hna) theorem decidable_iff [instance] {a b : Prop} (Ha : decidable a) (Hb : decidable b) : decidable (a ↔ b) := rec_on Ha (assume Ha, rec_on Hb (assume Hb : b, inl (iff_intro (assume H, Hb) (assume H, Ha))) (assume Hnb : ¬b, inr (assume H : a ↔ b, absurd (iff_elim_left H Ha) Hnb))) (assume Hna, rec_on Hb (assume Hb : b, inr (assume H : a ↔ b, absurd (iff_elim_right H Hb) Hna)) (assume Hnb : ¬b, inl (iff_intro (assume Ha, absurd_elim b Ha Hna) (assume Hb, absurd_elim a Hb Hnb)))) theorem decidable_implies [instance] {a b : Prop} (Ha : decidable a) (Hb : decidable b) : decidable (a → b) := rec_on Ha (assume Ha : a, rec_on Hb (assume Hb : b, inl (assume H, Hb)) (assume Hnb : ¬b, inr (assume H : a → b, absurd (H Ha) Hnb))) (assume Hna : ¬a, inl (assume Ha, absurd_elim b Ha Hna)) theorem decidable_iff_equiv {a b : Prop} (Ha : decidable a) (H : a ↔ b) : decidable b := rec_on Ha (assume Ha : a, inl (iff_elim_left H Ha)) (assume Hna : ¬a, inr (iff_elim_left (iff_flip_sign H) Hna)) theorem decidable_eq_equiv {a b : Prop} (Ha : decidable a) (H : a = b) : decidable b := decidable_iff_equiv Ha (eq_to_iff H) end decidable