--- Copyright (c) 2014 Floris van Doorn. All rights reserved. --- Released under Apache 2.0 license as described in the file LICENSE. --- Author: Floris van Doorn, Leonardo de Moura -- Basic operations on the natural numbers. import logic.connectives data.num algebra.binary open eq.ops binary namespace nat definition addl (x y : ℕ) : ℕ := nat.rec y (λ n r, succ r) x infix `⊕`:65 := addl theorem addl.succ_right (n m : ℕ) : n ⊕ succ m = succ (n ⊕ m) := nat.induction_on n rfl (λ n₁ ih, calc succ n₁ ⊕ succ m = succ (n₁ ⊕ succ m) : rfl ... = succ (succ (n₁ ⊕ m)) : ih ... = succ (succ n₁ ⊕ m) : rfl) theorem add_eq_addl (x : ℕ) : ∀y, x + y = x ⊕ y := nat.induction_on x (λ y, nat.induction_on y rfl (λ y₁ ih, calc zero + succ y₁ = succ (zero + y₁) : rfl ... = succ (zero ⊕ y₁) : {ih} ... = zero ⊕ (succ y₁) : rfl)) (λ x₁ ih₁ y, nat.induction_on y (calc succ x₁ + zero = succ (x₁ + zero) : rfl ... = succ (x₁ ⊕ zero) : {ih₁ zero} ... = succ x₁ ⊕ zero : rfl) (λ y₁ ih₂, calc succ x₁ + succ y₁ = succ (succ x₁ + y₁) : rfl ... = succ (succ x₁ ⊕ y₁) : {ih₂} ... = succ x₁ ⊕ succ y₁ : addl.succ_right)) -- Successor and predecessor -- ------------------------- theorem succ_ne_zero (n : ℕ) : succ n ≠ 0 := assume H, no_confusion H -- add_rewrite succ_ne_zero theorem pred.zero : pred 0 = 0 := rfl theorem pred.succ (n : ℕ) : pred (succ n) = n := rfl irreducible pred theorem zero_or_succ_pred (n : ℕ) : n = 0 ∨ n = succ (pred n) := induction_on n (or.inl rfl) (take m IH, or.inr (show succ m = succ (pred (succ m)), from congr_arg succ !pred.succ⁻¹)) theorem zero_or_exists_succ (n : ℕ) : n = 0 ∨ ∃k, n = succ k := or.imp_or (zero_or_succ_pred n) (assume H, H) (assume H : n = succ (pred n), exists_intro (pred n) H) theorem case {P : ℕ → Prop} (n : ℕ) (H1: P 0) (H2 : ∀m, P (succ m)) : P n := induction_on n H1 (take m IH, H2 m) theorem succ.inj {n m : ℕ} (H : succ n = succ m) : n = m := no_confusion H (λe, e) theorem succ.ne_self {n : ℕ} : succ n ≠ n := induction_on n (take H : 1 = 0, have ne : 1 ≠ 0, from !succ_ne_zero, absurd H ne) (take k IH H, IH (succ.inj H)) theorem discriminate {B : Prop} {n : ℕ} (H1: n = 0 → B) (H2 : ∀m, n = succ m → B) : B := or.elim (zero_or_succ_pred n) (take H3 : n = 0, H1 H3) (take H3 : n = succ (pred n), H2 (pred n) H3) theorem two_step_induction_on {P : ℕ → Prop} (a : ℕ) (H1 : P 0) (H2 : P 1) (H3 : ∀ (n : ℕ) (IH1 : P n) (IH2 : P (succ n)), P (succ (succ n))) : P a := have stronger : P a ∧ P (succ a), from induction_on a (and.intro H1 H2) (take k IH, have IH1 : P k, from and.elim_left IH, have IH2 : P (succ k), from and.elim_right IH, and.intro IH2 (H3 k IH1 IH2)), and.elim_left stronger theorem sub_induction {P : ℕ → ℕ → Prop} (n m : ℕ) (H1 : ∀m, P 0 m) (H2 : ∀n, P (succ n) 0) (H3 : ∀n m, P n m → P (succ n) (succ m)) : P n m := have general : ∀m, P n m, from induction_on n (take m : ℕ, H1 m) (take k : ℕ, assume IH : ∀m, P k m, take m : ℕ, discriminate (assume Hm : m = 0, Hm⁻¹ ▸ (H2 k)) (take l : ℕ, assume Hm : m = succ l, Hm⁻¹ ▸ (H3 k l (IH l)))), general m -- Addition -- -------- theorem add.zero_right (n : ℕ) : n + 0 = n := rfl theorem add.succ_right (n m : ℕ) : n + succ m = succ (n + m) := rfl irreducible add theorem add.zero_left (n : ℕ) : 0 + n = n := induction_on n !add.zero_right (take m IH, show 0 + succ m = succ m, from calc 0 + succ m = succ (0 + m) : add.succ_right ... = succ m : IH) theorem add.succ_left (n m : ℕ) : (succ n) + m = succ (n + m) := induction_on m (!add.zero_right ▸ !add.zero_right) (take k IH, calc succ n + succ k = succ (succ n + k) : add.succ_right ... = succ (succ (n + k)) : IH ... = succ (n + succ k) : add.succ_right) theorem add.comm (n m : ℕ) : n + m = m + n := induction_on m (!add.zero_right ⬝ !add.zero_left⁻¹) (take k IH, calc n + succ k = succ (n+k) : add.succ_right ... = succ (k + n) : IH ... = succ k + n : add.succ_left) theorem add.move_succ (n m : ℕ) : succ n + m = n + succ m := !add.succ_left ⬝ !add.succ_right⁻¹ theorem add.comm_succ (n m : ℕ) : n + succ m = m + succ n := !add.move_succ⁻¹ ⬝ !add.comm theorem add.assoc (n m k : ℕ) : (n + m) + k = n + (m + k) := induction_on k (!add.zero_right ▸ !add.zero_right) (take l IH, calc (n + m) + succ l = succ ((n + m) + l) : add.succ_right ... = succ (n + (m + l)) : IH ... = n + succ (m + l) : add.succ_right ... = n + (m + succ l) : add.succ_right) theorem add.left_comm (n m k : ℕ) : n + (m + k) = m + (n + k) := left_comm add.comm add.assoc n m k theorem add.right_comm (n m k : ℕ) : n + m + k = n + k + m := right_comm add.comm add.assoc n m k -- ### cancelation theorem add.cancel_left {n m k : ℕ} : n + m = n + k → m = k := induction_on n (take H : 0 + m = 0 + k, !add.zero_left⁻¹ ⬝ H ⬝ !add.zero_left) (take (n : ℕ) (IH : n + m = n + k → m = k) (H : succ n + m = succ n + k), have H2 : succ (n + m) = succ (n + k), from calc succ (n + m) = succ n + m : add.succ_left ... = succ n + k : H ... = succ (n + k) : add.succ_left, have H3 : n + m = n + k, from succ.inj H2, IH H3) theorem add.cancel_right {n m k : ℕ} (H : n + m = k + m) : n = k := have H2 : m + n = m + k, from !add.comm ⬝ H ⬝ !add.comm, add.cancel_left H2 theorem add.eq_zero_left {n m : ℕ} : n + m = 0 → n = 0 := induction_on n (take (H : 0 + m = 0), rfl) (take k IH, assume H : succ k + m = 0, absurd (show succ (k + m) = 0, from calc succ (k + m) = succ k + m : add.succ_left ... = 0 : H) !succ_ne_zero) theorem add.eq_zero_right {n m : ℕ} (H : n + m = 0) : m = 0 := add.eq_zero_left (!add.comm ⬝ H) theorem add.eq_zero {n m : ℕ} (H : n + m = 0) : n = 0 ∧ m = 0 := and.intro (add.eq_zero_left H) (add.eq_zero_right H) -- ### misc theorem add.one (n : ℕ) : n + 1 = succ n := !add.zero_right ▸ !add.succ_right theorem add.one_left (n : ℕ) : 1 + n = succ n := !add.zero_left ▸ !add.succ_left -- TODO: rename? remove? theorem induction_plus_one {P : nat → Prop} (a : ℕ) (H1 : P 0) (H2 : ∀ (n : ℕ) (IH : P n), P (n + 1)) : P a := nat.rec H1 (take n IH, !add.one ▸ (H2 n IH)) a -- Multiplication -- -------------- theorem mul.zero_right (n : ℕ) : n * 0 = 0 := rfl theorem mul.succ_right (n m : ℕ) : n * succ m = n * m + n := rfl irreducible mul -- ### commutativity, distributivity, associativity, identity theorem mul.zero_left (n : ℕ) : 0 * n = 0 := induction_on n !mul.zero_right (take m IH, !mul.succ_right ⬝ !add.zero_right ⬝ IH) theorem mul.succ_left (n m : ℕ) : (succ n) * m = (n * m) + m := induction_on m (!mul.zero_right ⬝ !mul.zero_right⁻¹ ⬝ !add.zero_right⁻¹) (take k IH, calc succ n * succ k = (succ n * k) + succ n : mul.succ_right ... = (n * k) + k + succ n : IH ... = (n * k) + (k + succ n) : add.assoc ... = (n * k) + (n + succ k) : add.comm_succ ... = (n * k) + n + succ k : add.assoc ... = (n * succ k) + succ k : mul.succ_right) theorem mul.comm (n m : ℕ) : n * m = m * n := induction_on m (!mul.zero_right ⬝ !mul.zero_left⁻¹) (take k IH, calc n * succ k = n * k + n : mul.succ_right ... = k * n + n : IH ... = (succ k) * n : mul.succ_left) theorem mul.distr_right (n m k : ℕ) : (n + m) * k = n * k + m * k := induction_on k (calc (n + m) * 0 = 0 : mul.zero_right ... = 0 + 0 : add.zero_right ... = n * 0 + 0 : mul.zero_right ... = n * 0 + m * 0 : mul.zero_right) (take l IH, calc (n + m) * succ l = (n + m) * l + (n + m) : mul.succ_right ... = n * l + m * l + (n + m) : IH ... = n * l + m * l + n + m : add.assoc ... = n * l + n + m * l + m : add.right_comm ... = n * l + n + (m * l + m) : add.assoc ... = n * succ l + (m * l + m) : mul.succ_right ... = n * succ l + m * succ l : mul.succ_right) theorem mul.distr_left (n m k : ℕ) : n * (m + k) = n * m + n * k := calc n * (m + k) = (m + k) * n : mul.comm ... = m * n + k * n : mul.distr_right ... = n * m + k * n : mul.comm ... = n * m + n * k : mul.comm theorem mul.assoc (n m k : ℕ) : (n * m) * k = n * (m * k) := induction_on k (calc (n * m) * 0 = 0 : mul.zero_right ... = n * 0 : mul.zero_right ... = n * (m * 0) : mul.zero_right) (take l IH, calc (n * m) * succ l = (n * m) * l + n * m : mul.succ_right ... = n * (m * l) + n * m : IH ... = n * (m * l + m) : mul.distr_left ... = n * (m * succ l) : mul.succ_right) theorem mul.left_comm (n m k : ℕ) : n * (m * k) = m * (n * k) := left_comm mul.comm mul.assoc n m k theorem mul.right_comm (n m k : ℕ) : n * m * k = n * k * m := right_comm mul.comm mul.assoc n m k theorem mul.one_right (n : ℕ) : n * 1 = n := calc n * 1 = n * 0 + n : mul.succ_right ... = 0 + n : mul.zero_right ... = n : add.zero_left theorem mul.one_left (n : ℕ) : 1 * n = n := calc 1 * n = n * 1 : mul.comm ... = n : mul.one_right theorem mul.eq_zero {n m : ℕ} (H : n * m = 0) : n = 0 ∨ m = 0 := discriminate (take Hn : n = 0, or.inl Hn) (take (k : ℕ), assume (Hk : n = succ k), discriminate (take (Hm : m = 0), or.inr Hm) (take (l : ℕ), assume (Hl : m = succ l), have Heq : succ (k * succ l + l) = n * m, from (calc n * m = n * succ l : Hl ... = succ k * succ l : Hk ... = k * succ l + succ l : mul.succ_left ... = succ (k * succ l + l) : add.succ_right)⁻¹, absurd (Heq ⬝ H) !succ_ne_zero)) end nat