-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Authors: Jeremy Avigad, Leonardo de Moura definition imp (a b : Prop) : Prop := a → b variables {a b c d : Prop} theorem mt (H1 : a → b) (H2 : ¬b) : ¬a := assume Ha : a, absurd (H1 Ha) H2 -- make c explicit and rename to false.elim theorem false_elim {c : Prop} (H : false) : c := false.rec c H -- not -- --- theorem not_elim (H1 : ¬a) (H2 : a) : false := H1 H2 theorem not_intro (H : a → false) : ¬a := H theorem not_not_intro (Ha : a) : ¬¬a := assume Hna : ¬a, absurd Ha Hna theorem not_implies_left (H : ¬(a → b)) : ¬¬a := assume Hna : ¬a, absurd (assume Ha : a, absurd Ha Hna) H theorem not_implies_right (H : ¬(a → b)) : ¬b := assume Hb : b, absurd (assume Ha : a, Hb) H theorem not_not_em : ¬¬(a ∨ ¬a) := assume not_em : ¬(a ∨ ¬a), have Hnp : ¬a, from assume Hp : a, absurd (or.inl Hp) not_em, absurd (or.inr Hnp) not_em -- and -- --- namespace and definition not_left (b : Prop) (Hna : ¬a) : ¬(a ∧ b) := assume H : a ∧ b, absurd (elim_left H) Hna definition not_right (a : Prop) {b : Prop} (Hnb : ¬b) : ¬(a ∧ b) := assume H : a ∧ b, absurd (elim_right H) Hnb theorem swap (H : a ∧ b) : b ∧ a := intro (elim_right H) (elim_left H) theorem imp_and (H₁ : a ∧ b) (H₂ : a → c) (H₃ : b → d) : c ∧ d := elim H₁ (assume Ha : a, assume Hb : b, intro (H₂ Ha) (H₃ Hb)) theorem imp_left (H₁ : a ∧ c) (H : a → b) : b ∧ c := elim H₁ (assume Ha : a, assume Hc : c, intro (H Ha) Hc) theorem imp_right (H₁ : c ∧ a) (H : a → b) : c ∧ b := elim H₁ (assume Hc : c, assume Ha : a, intro Hc (H Ha)) theorem comm : a ∧ b ↔ b ∧ a := iff.intro (λH, swap H) (λH, swap H) theorem assoc : (a ∧ b) ∧ c ↔ a ∧ (b ∧ c) := iff.intro (assume H, intro (elim_left (elim_left H)) (intro (elim_right (elim_left H)) (elim_right H))) (assume H, intro (intro (elim_left H) (elim_left (elim_right H))) (elim_right (elim_right H))) end and -- or -- -- namespace or definition not_intro (Hna : ¬a) (Hnb : ¬b) : ¬(a ∨ b) := assume H : a ∨ b, or.rec_on H (assume Ha, absurd Ha Hna) (assume Hb, absurd Hb Hnb) theorem imp_or (H₁ : a ∨ b) (H₂ : a → c) (H₃ : b → d) : c ∨ d := elim H₁ (assume Ha : a, inl (H₂ Ha)) (assume Hb : b, inr (H₃ Hb)) theorem imp_or_left (H₁ : a ∨ c) (H : a → b) : b ∨ c := elim H₁ (assume H₂ : a, inl (H H₂)) (assume H₂ : c, inr H₂) theorem imp_or_right (H₁ : c ∨ a) (H : a → b) : c ∨ b := elim H₁ (assume H₂ : c, inl H₂) (assume H₂ : a, inr (H H₂)) theorem elim3 (H : a ∨ b ∨ c) (Ha : a → d) (Hb : b → d) (Hc : c → d) : d := elim H Ha (assume H₂, elim H₂ Hb Hc) theorem resolve_right (H₁ : a ∨ b) (H₂ : ¬a) : b := elim H₁ (assume Ha, absurd Ha H₂) (assume Hb, Hb) theorem resolve_left (H₁ : a ∨ b) (H₂ : ¬b) : a := elim H₁ (assume Ha, Ha) (assume Hb, absurd Hb H₂) theorem swap (H : a ∨ b) : b ∨ a := elim H (assume Ha, inr Ha) (assume Hb, inl Hb) theorem comm : a ∨ b ↔ b ∨ a := iff.intro (λH, swap H) (λH, swap H) theorem assoc : (a ∨ b) ∨ c ↔ a ∨ (b ∨ c) := iff.intro (assume H, elim H (assume H₁, elim H₁ (assume Ha, inl Ha) (assume Hb, inr (inl Hb))) (assume Hc, inr (inr Hc))) (assume H, elim H (assume Ha, (inl (inl Ha))) (assume H₁, elim H₁ (assume Hb, inl (inr Hb)) (assume Hc, inr Hc))) end or -- iff -- --- namespace iff definition def : (a ↔ b) = ((a → b) ∧ (b → a)) := !eq.refl end iff -- exists_unique -- ------------- definition exists_unique {A : Type} (p : A → Prop) := ∃x, p x ∧ ∀y, p y → y = x notation `∃!` binders `,` r:(scoped P, exists_unique P) := r theorem exists_unique_intro {A : Type} {p : A → Prop} (w : A) (H1 : p w) (H2 : ∀y, p y → y = w) : ∃!x, p x := exists_intro w (and.intro H1 H2) theorem exists_unique_elim {A : Type} {p : A → Prop} {b : Prop} (H2 : ∃!x, p x) (H1 : ∀x, p x → (∀y, p y → y = x) → b) : b := obtain w Hw, from H2, H1 w (and.elim_left Hw) (and.elim_right Hw) -- if-then-else -- ------------ section open eq.ops variables {A : Type} {c₁ c₂ : Prop} definition if_true (t e : A) : (if true then t else e) = t := if_pos trivial definition if_false (t e : A) : (if false then t else e) = e := if_neg not_false theorem if_cond_congr [H₁ : decidable c₁] [H₂ : decidable c₂] (Heq : c₁ ↔ c₂) (t e : A) : (if c₁ then t else e) = (if c₂ then t else e) := decidable.rec_on H₁ (λ Hc₁ : c₁, decidable.rec_on H₂ (λ Hc₂ : c₂, if_pos Hc₁ ⬝ (if_pos Hc₂)⁻¹) (λ Hnc₂ : ¬c₂, absurd (iff.elim_left Heq Hc₁) Hnc₂)) (λ Hnc₁ : ¬c₁, decidable.rec_on H₂ (λ Hc₂ : c₂, absurd (iff.elim_right Heq Hc₂) Hnc₁) (λ Hnc₂ : ¬c₂, if_neg Hnc₁ ⬝ (if_neg Hnc₂)⁻¹)) theorem if_congr_aux [H₁ : decidable c₁] [H₂ : decidable c₂] {t₁ t₂ e₁ e₂ : A} (Hc : c₁ ↔ c₂) (Ht : t₁ = t₂) (He : e₁ = e₂) : (if c₁ then t₁ else e₁) = (if c₂ then t₂ else e₂) := Ht ▸ He ▸ (if_cond_congr Hc t₁ e₁) theorem if_congr [H₁ : decidable c₁] {t₁ t₂ e₁ e₂ : A} (Hc : c₁ ↔ c₂) (Ht : t₁ = t₂) (He : e₁ = e₂) : (if c₁ then t₁ else e₁) = (@ite c₂ (decidable.decidable_iff_equiv H₁ Hc) A t₂ e₂) := have H2 [visible] : decidable c₂, from (decidable.decidable_iff_equiv H₁ Hc), if_congr_aux Hc Ht He end