-- Copyright (c) 2014 Jakob von Raumer. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Authors: Jakob von Raumer -- Ported from Coq HoTT import hott.path hott.trunc hott.equiv open path truncation sigma /- In hott.axioms.funext, we defined function extensionality to be the assertion that the map apD10 is an equivalence. We now prove that this follows from a couple of weaker-looking forms of function extensionality. We do require eta conversion, which Coq 8.4+ has judgmentally. This proof is originally due to Voevodsky; it has since been simplified by Peter Lumsdaine and Michael Shulman. -/ -- Naive funext is the simple assertion that pointwise equal functions are equal. -- TODO think about universe levels definition naive_funext := Π (A : Type) (P : A → Type) (f g : Πx, P x), (f ∼ g) → f ≈ g -- Weak funext says that a product of contractible types is contractible. definition weak_funext := Π (A : Type₁) (P : A → Type₁), (Πx, is_contr (P x)) → is_contr (Πx, P x) -- We define a variant of [Funext] which does not invoke an axiom. definition funext_type := Π (A : Type₁) (P : A → Type₁) (f g : Πx, P x), IsEquiv (@apD10 A P f g) -- The obvious implications are Funext -> NaiveFunext -> WeakFunext -- TODO: Get class inference to work locally definition funext_implies_naive_funext : funext_type → naive_funext := (λ Fe A P f g h, have Fefg: IsEquiv (@apD10 A P f g), from Fe A P f g, have eq1 : _, from (@IsEquiv.inv _ _ (@apD10 A P f g) Fefg h), eq1 ) /-definition naive_funext_implies_weak_funext : naive_funext → weak_funext := (λ nf A P Pc, let c := λx, @center (P x) (Pc x) in let p : Π (f : Πx, P x) (x : A), (c x) ≈ (f x) := sorry in is_contr.mk c (λ f, nf A P c f (λx, p f x)) )-/ /- The less obvious direction is that WeakFunext implies Funext (and hence all three are logically equivalent). The point is that under weak funext, the space of "pointwise homotopies" has the same universal property as the space of paths. -/ context parameters (wf : weak_funext) {A : Type₁} {B : A → Type₁} (f : Πx, B x) protected definition idhtpy : f ∼ f := (λx, idp) definition contr_basedhtpy : is_contr (Σ (g : Πx, B x), f ∼ g) := is_contr.mk (dpair f idhtpy) (λ dp, sigma.rec_on dp (λ (g : Πx, B x) (h : f ∼ g), let r := λ (k : Πx, Σ (y : B x), f x ≈ y), @dpair _ (λg, f ∼ g) (λx, dpr1 (k x)) (λx, dpr2 (k x)) in let s := λ g h x, @dpair _ (λy, f x ≈ y) (g x) (h x) in have t1 : Πx, is_contr (Σ y, f x ≈ y), from (λx, !contr_basedpaths), have t2 : is_contr (Πx, Σ (y : B x), f x ≈ y), from wf _ _ t1, have t3 : (λ x, @dpair _ (λy, f x ≈ y) (f x) idp) ≈ s g h, from @path_contr (Πx, Σ (y : B x), f x ≈ y) t2 _ _, have t4 : r (λ x, dpair (f x) idp) ≈ r (s g h), from ap r t3, have endt : dpair f idhtpy ≈ dpair g h, from t4, endt ) ) parameters (Q : Π g (h : f ∼ g), Type) (d : Q f idhtpy) end