-- Copyright (c) 2014 Jakob von Raumer. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Jakob von Raumer -- Ported from Coq HoTT import hott.path hott.trunc data.sigma data.prod open path prod inductive is_pointed [class] (A : Type) := pointed_mk : Π(a : A), is_pointed A namespace is_pointed variables {A B : Type} (f : A → B) definition point (A : Type) [H : is_pointed A] : A := is_pointed.rec (λinv, inv) H -- Any contractible type is pointed protected definition contr [instance] (H : Contr A) : is_pointed A := pointed_mk (center H) -- A pi type with a pointed target is pointed protected definition pi [instance] {P : A → Type} [H : Πx, is_pointed (P x)] : is_pointed (Πx, P x) := pointed_mk (λx, point (P x)) -- A sigma type of pointed components is pointed protected definition sigma [instance] {P : A → Type} [G : is_pointed A] [H : is_pointed (P (point A))] : is_pointed (Σx, P x) := pointed_mk (sigma.dpair (point A) (point (P (point A)))) protected definition prod [H1 : is_pointed A] [H2 : is_pointed B] : is_pointed (A × B) := pointed_mk (prod.mk (point A) (point B)) protected definition loop_space (a : A) : is_pointed (a ≈ a) := pointed_mk idp end is_pointed