/* Copyright (c) 2013 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura */ #include #include "expr.h" #include "free_vars.h" #include "list.h" #include "buffer.h" #include "trace.h" #include "exception.h" namespace lean { class value; typedef list context; enum class value_kind { Expr, Closure, BoundedVar }; class value { unsigned m_kind:2; unsigned m_bvar:30; expr m_expr; context m_ctx; public: value() {} explicit value(expr const & e):m_kind(static_cast(value_kind::Expr)), m_expr(e) {} explicit value(unsigned k):m_kind(static_cast(value_kind::BoundedVar)), m_bvar(k) {} value(expr const & e, context const & c):m_kind(static_cast(value_kind::Closure)), m_expr(e), m_ctx(c) { lean_assert(is_lambda(e)); } value_kind kind() const { return static_cast(m_kind); } bool is_expr() const { return kind() == value_kind::Expr; } bool is_closure() const { return kind() == value_kind::Closure; } bool is_bounded_var() const { return kind() == value_kind::BoundedVar; } expr const & get_expr() const { lean_assert(is_expr() || is_closure()); return m_expr; } context const & get_ctx() const { lean_assert(is_closure()); return m_ctx; } unsigned get_var_idx() const { lean_assert(is_bounded_var()); return m_bvar; } }; value_kind kind(value const & v) { return v.kind(); } expr const & to_expr(value const & v) { return v.get_expr(); } context const & ctx_of(value const & v) { return v.get_ctx(); } unsigned to_bvar(value const & v) { return v.get_var_idx(); } value lookup(context const & c, unsigned i) { context const * curr = &c; while (!is_nil(*curr)) { if (i == 0) return head(*curr); --i; curr = &tail(*curr); } throw exception("unknown free variable"); } context extend(context const & c, value const & v) { return cons(v, c); } value normalize(expr const & a, context const & c, unsigned k); expr reify(value const & v, unsigned k); expr reify_closure(expr const & a, context const & c, unsigned k) { lean_assert(is_lambda(a)); expr new_t = reify(normalize(abst_type(a), c, k), k); expr new_b = reify(normalize(abst_body(a), extend(c, value(k)), k+1), k+1); // TODO: ETA-reduction if (is_app(new_b)) { // (lambda (x:T) (app f ... (var 0))) // check eta-rule applicability unsigned n = num_args(new_b); if (is_var(arg(new_b, n - 1), 0) && std::all_of(begin_args(new_b), end_args(new_b) - 1, [](expr const & arg) { return !has_free_var(arg, 0); })) { if (n == 2) return lower_free_vars(arg(new_b, 0), 1); else return lower_free_vars(app(n - 1, begin_args(new_b)), 1); } return lambda(abst_name(a), new_t, new_b); } else { return lambda(abst_name(a), new_t, new_b); } } expr reify(value const & v, unsigned k) { lean_trace("normalize", tout << "Reify kind: " << static_cast(v.kind()) << "\n"; if (v.is_bounded_var()) tout << "#" << to_bvar(v); else tout << to_expr(v); tout << "\n";); switch (v.kind()) { case value_kind::Expr: return to_expr(v); case value_kind::BoundedVar: return var(k - to_bvar(v) - 1); case value_kind::Closure: return reify_closure(to_expr(v), ctx_of(v), k); } lean_unreachable(); return expr(); } value normalize(expr const & a, context const & c, unsigned k) { lean_trace("normalize", tout << "Normalize, k: " << k << "\n" << a << "\n";); switch (a.kind()) { case expr_kind::Var: return lookup(c, var_idx(a)); case expr_kind::Constant: case expr_kind::Prop: case expr_kind::Type: case expr_kind::Numeral: return value(a); case expr_kind::App: { value f = normalize(arg(a, 0), c, k); unsigned i = 1; unsigned n = num_args(a); while (true) { if (f.is_closure()) { // beta reduction expr const & fv = to_expr(f); lean_trace("normalize", tout << "beta reduction...\n" << fv << "\n";); context new_c = extend(ctx_of(f), normalize(arg(a, i), c, k)); f = normalize(abst_body(fv), new_c, k); if (i == n - 1) return f; i++; } else { // TODO: support for interpreted symbols buffer new_args; new_args.push_back(reify(f, k)); for (; i < n; i++) new_args.push_back(reify(normalize(arg(a, i), c, k), k)); return value(app(new_args.size(), new_args.data())); } } } case expr_kind::Lambda: return value(a, c); case expr_kind::Pi: { expr new_t = reify(normalize(abst_type(a), c, k), k); expr new_b = reify(normalize(abst_body(a), extend(c, value(k)), k+1), k+1); return value(pi(abst_name(a), new_t, new_b)); }} lean_unreachable(); return value(a); } expr normalize(expr const & e) { return reify(normalize(e, context(), 0), 0); } }