/- Copyright (c) 2015 Leonardo de Moura. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura Naive sort for lists -/ import data.list.comb data.list.set data.list.perm data.list.sorted logic.connectives algebra.order namespace list open decidable nat variables {B A : Type} variable (R : A → A → Prop) variable [decR : decidable_rel R] include decR definition min_core : list A → A → A | [] a := a | (b::l) a := if R b a then min_core l b else min_core l a definition min : Π (l : list A), l ≠ nil → A | [] h := absurd rfl h | (a::l) h := min_core R l a variable [decA : decidable_eq A] include decA variable {R} variables (to : total R) (tr : transitive R) (rf : reflexive R) lemma min_core_lemma : ∀ {b l} a, b ∈ l ∨ b = a → R (min_core R l a) b | b [] a h := or.elim h (suppose b ∈ [], absurd this !not_mem_nil) (suppose b = a, have R a a, from rf a, begin subst b, unfold min_core, assumption end) | b (c::l) a h := or.elim h (suppose b ∈ c :: l, or.elim (eq_or_mem_of_mem_cons this) (suppose b = c, or.elim (em (R c a)) (suppose R c a, have R (min_core R l b) b, from min_core_lemma _ (or.inr rfl), begin unfold min_core, rewrite [if_pos `R c a`], subst c, assumption end) (suppose ¬ R c a, have R a c, from or_resolve_right (to c a) this, have R (min_core R l a) a, from min_core_lemma _ (or.inr rfl), have R (min_core R l a) c, from tr this `R a c`, begin unfold min_core, rewrite [if_neg `¬ R c a`], subst b, exact `R (min_core R l a) c` end)) (suppose b ∈ l, or.elim (em (R c a)) (suppose R c a, have R (min_core R l c) b, from min_core_lemma _ (or.inl `b ∈ l`), begin unfold min_core, rewrite [if_pos `R c a`], assumption end) (suppose ¬ R c a, have R (min_core R l a) b, from min_core_lemma _ (or.inl `b ∈ l`), begin unfold min_core, rewrite [if_neg `¬ R c a`], assumption end))) (suppose b = a, have R (min_core R l a) b, from min_core_lemma _ (or.inr this), or.elim (em (R c a)) (suppose R c a, have R (min_core R l c) c, from min_core_lemma _ (or.inr rfl), have R (min_core R l c) a, from tr this `R c a`, begin unfold min_core, rewrite [if_pos `R c a`], subst b, exact `R (min_core R l c) a` end) (suppose ¬ R c a, begin unfold min_core, rewrite [if_neg `¬ R c a`], assumption end)) lemma min_core_le_of_mem {b : A} {l : list A} (a : A) : b ∈ l → R (min_core R l a) b := assume h : b ∈ l, min_core_lemma to tr rf a (or.inl h) lemma min_core_le {l : list A} (a : A) : R (min_core R l a) a := min_core_lemma to tr rf a (or.inr rfl) lemma min_lemma : ∀ {l} (h : l ≠ nil), all l (R (min R l h)) | [] h := absurd rfl h | (b::l) h := all_of_forall (take x, suppose x ∈ b::l, or.elim (eq_or_mem_of_mem_cons this) (suppose x = b, have R (min_core R l b) b, from min_core_le to tr rf b, begin subst x, unfold min, assumption end) (suppose x ∈ l, have R (min_core R l b) x, from min_core_le_of_mem to tr rf _ this, begin unfold min, assumption end)) variable (R) lemma min_core_mem : ∀ l a, min_core R l a ∈ l ∨ min_core R l a = a | [] a := or.inr rfl | (b::l) a := or.elim (em (R b a)) (suppose R b a, begin unfold min_core, rewrite [if_pos `R b a`], apply or.elim (min_core_mem l b), suppose min_core R l b ∈ l, or.inl (mem_cons_of_mem _ this), suppose min_core R l b = b, by rewrite this; exact or.inl !mem_cons end) (suppose ¬ R b a, begin unfold min_core, rewrite [if_neg `¬ R b a`], apply or.elim (min_core_mem l a), suppose min_core R l a ∈ l, or.inl (mem_cons_of_mem _ this), suppose min_core R l a = a, or.inr this end) lemma min_mem : ∀ (l : list A) (h : l ≠ nil), min R l h ∈ l | [] h := absurd rfl h | (a::l) h := begin unfold min, apply or.elim (min_core_mem R l a), suppose min_core R l a ∈ l, mem_cons_of_mem _ this, suppose min_core R l a = a, by rewrite this; apply mem_cons end lemma min_map (f : B → A) {l : list B} (h : l ≠ nil) : all l (λ b, (R (min R (map f l) (map_ne_nil_of_ne_nil _ h))) (f b)):= using to tr rf, begin apply all_of_forall, intro b Hb, have Hfa : all (map f l) (R (min R (map f l) (map_ne_nil_of_ne_nil _ h))), from min_lemma to tr rf _, have Hfb : f b ∈ map f l, from mem_map _ Hb, exact of_mem_of_all Hfb Hfa end lemma min_map_all (f : B → A) {l : list B} (h : l ≠ nil) {b : B} (Hb : b ∈ l) : R (min R (map f l) ((map_ne_nil_of_ne_nil _ h))) (f b) := of_mem_of_all Hb (min_map _ to tr rf f h) omit decR private lemma ne_nil {l : list A} {n : nat} : length l = succ n → l ≠ nil := assume h₁ h₂, by rewrite h₂ at h₁; contradiction include decR lemma sort_aux_lemma {l n} (h : length l = succ n) : length (erase (min R l (ne_nil h)) l) = n := have min R l _ ∈ l, from min_mem R l (ne_nil h), have length (erase (min R l _) l) = pred (length l), from length_erase_of_mem this, by rewrite h at this; exact this definition sort_aux : Π (n : nat) (l : list A), length l = n → list A | 0 l h := [] | (succ n) l h := let m := min R l (ne_nil h) in let l₁ := erase m l in m :: sort_aux n l₁ (sort_aux_lemma R h) definition sort (l : list A) : list A := sort_aux R (length l) l rfl open perm lemma sort_aux_perm : ∀ {n : nat} {l : list A} (h : length l = n), sort_aux R n l h ~ l | 0 l h := by rewrite [↑sort_aux, eq_nil_of_length_eq_zero h] | (succ n) l h := let m := min R l (ne_nil h) in have leq : length (erase m l) = n, from sort_aux_lemma R h, calc m :: sort_aux R n (erase m l) leq ~ m :: erase m l : perm.skip m (sort_aux_perm leq) ... ~ l : perm_erase (min_mem _ _ _) lemma sort_perm (l : list A) : sort R l ~ l := sort_aux_perm R rfl lemma strongly_sorted_sort_aux : ∀ {n : nat} {l : list A} (h : length l = n), strongly_sorted R (sort_aux R n l h) | 0 l h := !strongly_sorted.base | (succ n) l h := let m := min R l (ne_nil h) in have leq : length (erase m l) = n, from sort_aux_lemma R h, have ss : strongly_sorted R (sort_aux R n (erase m l) leq), from strongly_sorted_sort_aux leq, have all l (R m), from min_lemma to tr rf (ne_nil h), have hall : all (sort_aux R n (erase m l) leq) (R m), from all_of_forall (take x, suppose x ∈ sort_aux R n (erase m l) leq, have x ∈ erase m l, from mem_perm (sort_aux_perm R leq) this, have x ∈ l, from mem_of_mem_erase this, show R m x, from of_mem_of_all this `all l (R m)`), strongly_sorted.step hall ss variable {R} lemma strongly_sorted_sort_core (to : total R) (tr : transitive R) (rf : reflexive R) (l : list A) : strongly_sorted R (sort R l) := @strongly_sorted_sort_aux _ _ _ _ to tr rf (length l) l rfl lemma sort_eq_of_perm_core {l₁ l₂ : list A} (to : total R) (tr : transitive R) (rf : reflexive R) (asy : anti_symmetric R) (h : l₁ ~ l₂) : sort R l₁ = sort R l₂ := have s₁ : sorted R (sort R l₁), from sorted_of_strongly_sorted (strongly_sorted_sort_core to tr rf l₁), have s₂ : sorted R (sort R l₂), from sorted_of_strongly_sorted (strongly_sorted_sort_core to tr rf l₂), have p : sort R l₁ ~ sort R l₂, from calc sort R l₁ ~ l₁ : sort_perm ... ~ l₂ : h ... ~ sort R l₂ : sort_perm, eq_of_sorted_of_perm tr asy p s₁ s₂ section omit decR lemma strongly_sorted_sort [decidable_linear_order A] (l : list A) : strongly_sorted le (sort le l) := strongly_sorted_sort_core le.total (@le.trans A _) le.refl l lemma sort_eq_of_perm {l₁ l₂ : list A} [decidable_linear_order A] (h : l₁ ~ l₂) : sort le l₁ = sort le l₂ := sort_eq_of_perm_core le.total (@le.trans A _) le.refl (@le.antisymm A _) h end end list