/- Copyright (c) 2014 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Floris van Doorn Theorems about functions with multiple arguments -/ variables {A U V W X Y Z : Type} {B : A → Type} {C : Πa, B a → Type} {D : Πa b, C a b → Type} {E : Πa b c, D a b c → Type} {F : Πa b c d, E a b c d → Type} {G : Πa b c d e, F a b c d e → Type} {H : Πa b c d e f, G a b c d e f → Type} variables {a a' : A} {u u' : U} {v v' : V} {w w' : W} {x x' x'' : X} {y y' : Y} {z z' : Z} {b : B a} {b' : B a'} {c : C a b} {c' : C a' b'} {d : D a b c} {d' : D a' b' c'} {e : E a b c d} {e' : E a' b' c' d'} {ff : F a b c d e} {f' : F a' b' c' d' e'} {g : G a b c d e ff} {g' : G a' b' c' d' e' f'} {h : H a b c d e ff g} {h' : H a' b' c' d' e' f' g'} namespace eq /- Naming convention: The theorem which states how to construct an path between two function applications is api₀i₁...iₙ. Here i₀, ... iₙ are digits, n is the arity of the function(s), and iⱼ specifies the dimension of the path between the jᵗʰ argument (i₀ specifies the dimension of the path between the functions). A value iⱼ ≡ 0 means that the jᵗʰ arguments are definitionally equal The functions are non-dependent, except when the theorem name contains trailing zeroes (where the function is dependent only in the arguments where it doesn't result in any transports in the theorem statement). For the fully-dependent versions (except that the conclusion doesn't contain a transport) we write apdi₀i₁...iₙ. For versions where only some arguments depend on some other arguments, or for versions with transport in the conclusion (like apdt), we don't have a consistent naming scheme (yet). We don't prove each theorem systematically, but prove only the ones which we actually need. -/ definition homotopy2 [reducible] (f g : Πa b, C a b) : Type := Πa b, f a b = g a b definition homotopy3 [reducible] (f g : Πa b c, D a b c) : Type := Πa b c, f a b c = g a b c definition homotopy4 [reducible] (f g : Πa b c d, E a b c d) : Type := Πa b c d, f a b c d = g a b c d infix ` ~2 `:50 := homotopy2 infix ` ~3 `:50 := homotopy3 definition ap0111 (f : U → V → W → X) (Hu : u = u') (Hv : v = v') (Hw : w = w') : f u v w = f u' v' w' := by cases Hu; congruence; repeat assumption definition ap01111 (f : U → V → W → X → Y) (Hu : u = u') (Hv : v = v') (Hw : w = w') (Hx : x = x') : f u v w x = f u' v' w' x' := by cases Hu; congruence; repeat assumption definition ap011111 (f : U → V → W → X → Y → Z) (Hu : u = u') (Hv : v = v') (Hw : w = w') (Hx : x = x') (Hy : y = y') : f u v w x y = f u' v' w' x' y' := by cases Hu; congruence; repeat assumption definition ap0111111 (f : U → V → W → X → Y → Z → A) (Hu : u = u') (Hv : v = v') (Hw : w = w') (Hx : x = x') (Hy : y = y') (Hz : z = z') : f u v w x y z = f u' v' w' x' y' z' := by cases Hu; congruence; repeat assumption definition ap010 (f : X → Πa, B a) (Hx : x = x') : f x ~ f x' := by intros; cases Hx; reflexivity definition ap0100 (f : X → Πa b, C a b) (Hx : x = x') : f x ~2 f x' := by intros; cases Hx; reflexivity definition ap01000 (f : X → Πa b c, D a b c) (Hx : x = x') : f x ~3 f x' := by intros; cases Hx; reflexivity definition apd011 (f : Πa, B a → Z) (Ha : a = a') (Hb : transport B Ha b = b') : f a b = f a' b' := by cases Ha; cases Hb; reflexivity definition apd0111 (f : Πa b, C a b → Z) (Ha : a = a') (Hb : transport B Ha b = b') (Hc : cast (apd011 C Ha Hb) c = c') : f a b c = f a' b' c' := by cases Ha; cases Hb; cases Hc; reflexivity definition apd01111 (f : Πa b c, D a b c → Z) (Ha : a = a') (Hb : transport B Ha b = b') (Hc : cast (apd011 C Ha Hb) c = c') (Hd : cast (apd0111 D Ha Hb Hc) d = d') : f a b c d = f a' b' c' d' := by cases Ha; cases Hb; cases Hc; cases Hd; reflexivity definition apd011111 (f : Πa b c d, E a b c d → Z) (Ha : a = a') (Hb : transport B Ha b = b') (Hc : cast (apd011 C Ha Hb) c = c') (Hd : cast (apd0111 D Ha Hb Hc) d = d') (He : cast (apd01111 E Ha Hb Hc Hd) e = e') : f a b c d e = f a' b' c' d' e' := by cases Ha; cases Hb; cases Hc; cases Hd; cases He; reflexivity definition apd0111111 (f : Πa b c d e, F a b c d e → Z) (Ha : a = a') (Hb : transport B Ha b = b') (Hc : cast (apd011 C Ha Hb) c = c') (Hd : cast (apd0111 D Ha Hb Hc) d = d') (He : cast (apd01111 E Ha Hb Hc Hd) e = e') (Hf : cast (apd011111 F Ha Hb Hc Hd He) ff = f') : f a b c d e ff = f a' b' c' d' e' f' := begin cases Ha, cases Hb, cases Hc, cases Hd, cases He, cases Hf, reflexivity end -- definition apd0111111 (f : Πa b c d e ff, G a b c d e ff → Z) (Ha : a = a') (Hb : transport B Ha b = b') -- (Hc : cast (apd011 C Ha Hb) c = c') (Hd : cast (apd0111 D Ha Hb Hc) d = d') -- (He : cast (apd01111 E Ha Hb Hc Hd) e = e') (Hf : cast (apd011111 F Ha Hb Hc Hd He) ff = f') -- (Hg : cast (apd0111111 G Ha Hb Hc Hd He Hf) g = g') -- : f a b c d e ff g = f a' b' c' d' e' f' g' := -- by cases Ha; cases Hb; cases Hc; cases Hd; cases He; cases Hf; cases Hg; reflexivity -- definition apd01111111 (f : Πa b c d e ff g, G a b c d e ff g → Z) (Ha : a = a') (Hb : transport B Ha b = b') -- (Hc : cast (apd011 C Ha Hb) c = c') (Hd : cast (apd0111 D Ha Hb Hc) d = d') -- (He : cast (apd01111 E Ha Hb Hc Hd) e = e') (Hf : cast (apd011111 F Ha Hb Hc Hd He) ff = f') -- (Hg : cast (apd0111111 G Ha Hb Hc Hd He Hf) g = g') (Hh : cast (apd01111111 H Ha Hb Hc Hd He Hf Hg) h = h') -- : f a b c d e ff g h = f a' b' c' d' e' f' g' h' := -- by cases Ha; cases Hb; cases Hc; cases Hd; cases He; cases Hf; cases Hg; cases Hh; reflexivity definition apd100 [unfold 6] {f g : Πa b, C a b} (p : f = g) : f ~2 g := λa b, apd10 (apd10 p a) b definition apd1000 [unfold 7] {f g : Πa b c, D a b c} (p : f = g) : f ~3 g := λa b c, apd100 (apd10 p a) b c /- some properties of these variants of ap -/ -- we only prove what we currently need definition ap010_con (f : X → Πa, B a) (p : x = x') (q : x' = x'') : ap010 f (p ⬝ q) a = ap010 f p a ⬝ ap010 f q a := eq.rec_on q (eq.rec_on p idp) definition ap010_ap (f : X → Πa, B a) (g : Y → X) (p : y = y') : ap010 f (ap g p) a = ap010 (λy, f (g y)) p a := eq.rec_on p idp /- the following theorems are function extentionality for functions with multiple arguments -/ definition eq_of_homotopy2 {f g : Πa b, C a b} (H : f ~2 g) : f = g := eq_of_homotopy (λa, eq_of_homotopy (H a)) definition eq_of_homotopy3 {f g : Πa b c, D a b c} (H : f ~3 g) : f = g := eq_of_homotopy (λa, eq_of_homotopy2 (H a)) definition eq_of_homotopy2_id (f : Πa b, C a b) : eq_of_homotopy2 (λa b, idpath (f a b)) = idpath f := begin transitivity eq_of_homotopy (λ a, idpath (f a)), {apply (ap eq_of_homotopy), apply eq_of_homotopy, intros, apply eq_of_homotopy_idp}, apply eq_of_homotopy_idp end definition eq_of_homotopy3_id (f : Πa b c, D a b c) : eq_of_homotopy3 (λa b c, idpath (f a b c)) = idpath f := begin transitivity _, {apply (ap eq_of_homotopy), apply eq_of_homotopy, intros, apply eq_of_homotopy2_id}, apply eq_of_homotopy_idp end definition eq_of_homotopy2_inv {f g : Πa b, C a b} (H : f ~2 g) : eq_of_homotopy2 (λa b, (H a b)⁻¹) = (eq_of_homotopy2 H)⁻¹ := ap eq_of_homotopy (eq_of_homotopy (λa, !eq_of_homotopy_inv)) ⬝ !eq_of_homotopy_inv definition eq_of_homotopy3_inv {f g : Πa b c, D a b c} (H : f ~3 g) : eq_of_homotopy3 (λa b c, (H a b c)⁻¹) = (eq_of_homotopy3 H)⁻¹ := ap eq_of_homotopy (eq_of_homotopy (λa, !eq_of_homotopy2_inv)) ⬝ !eq_of_homotopy_inv definition eq_of_homotopy2_con {f g h : Πa b, C a b} (H1 : f ~2 g) (H2 : g ~2 h) : eq_of_homotopy2 (λa b, H1 a b ⬝ H2 a b) = eq_of_homotopy2 H1 ⬝ eq_of_homotopy2 H2 := ap eq_of_homotopy (eq_of_homotopy (λa, !eq_of_homotopy_con)) ⬝ !eq_of_homotopy_con definition eq_of_homotopy3_con {f g h : Πa b c, D a b c} (H1 : f ~3 g) (H2 : g ~3 h) : eq_of_homotopy3 (λa b c, H1 a b c ⬝ H2 a b c) = eq_of_homotopy3 H1 ⬝ eq_of_homotopy3 H2 := ap eq_of_homotopy (eq_of_homotopy (λa, !eq_of_homotopy2_con)) ⬝ !eq_of_homotopy_con end eq open eq equiv is_equiv namespace funext definition is_equiv_apd100 [instance] (f g : Πa b, C a b) : is_equiv (@apd100 A B C f g) := adjointify _ eq_of_homotopy2 begin intro H, esimp [apd100, eq_of_homotopy2], apply eq_of_homotopy, intro a, apply concat, apply (ap (λx, apd10 (x a))), apply (right_inv apd10), apply (right_inv apd10) end begin intro p, cases p, apply eq_of_homotopy2_id end definition is_equiv_apd1000 [instance] (f g : Πa b c, D a b c) : is_equiv (@apd1000 A B C D f g) := adjointify _ eq_of_homotopy3 begin intro H, esimp, apply eq_of_homotopy, intro a, transitivity apd100 (eq_of_homotopy2 (H a)), {apply ap (λx, apd100 (x a)), apply right_inv apd10}, apply right_inv apd100 end begin intro p, cases p, apply eq_of_homotopy3_id end end funext attribute funext.is_equiv_apd100 funext.is_equiv_apd1000 [constructor] namespace eq open funext local attribute funext.is_equiv_apd100 [instance] protected definition homotopy2.rec_on {f g : Πa b, C a b} {P : (f ~2 g) → Type} (p : f ~2 g) (H : Π(q : f = g), P (apd100 q)) : P p := right_inv apd100 p ▸ H (eq_of_homotopy2 p) protected definition homotopy3.rec_on {f g : Πa b c, D a b c} {P : (f ~3 g) → Type} (p : f ~3 g) (H : Π(q : f = g), P (apd1000 q)) : P p := right_inv apd1000 p ▸ H (eq_of_homotopy3 p) definition eq_equiv_homotopy2 [constructor] (f g : Πa b, C a b) : (f = g) ≃ (f ~2 g) := equiv.mk apd100 _ definition eq_equiv_homotopy3 [constructor] (f g : Πa b c, D a b c) : (f = g) ≃ (f ~3 g) := equiv.mk apd1000 _ definition apd10_ap (f : X → Πa, B a) (p : x = x') : apd10 (ap f p) = ap010 f p := eq.rec_on p idp definition eq_of_homotopy_ap010 (f : X → Πa, B a) (p : x = x') : eq_of_homotopy (ap010 f p) = ap f p := inv_eq_of_eq !apd10_ap⁻¹ definition ap_eq_ap_of_homotopy {f : X → Πa, B a} {p q : x = x'} (H : ap010 f p ~ ap010 f q) : ap f p = ap f q := calc ap f p = eq_of_homotopy (ap010 f p) : eq_of_homotopy_ap010 ... = eq_of_homotopy (ap010 f q) : eq_of_homotopy H ... = ap f q : eq_of_homotopy_ap010 end eq