/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Jeremy Avigad, Jakob von Raumer, Floris van Doorn Ported from Coq HoTT -/ prelude import .path .function open eq function lift /- Equivalences -/ -- This is our definition of equivalence. In the HoTT-book it's called -- ihae (half-adjoint equivalence). structure is_equiv [class] {A B : Type} (f : A → B) := mk' :: (inv : B → A) (right_inv : Πb, f (inv b) = b) (left_inv : Πa, inv (f a) = a) (adj : Πx, right_inv (f x) = ap f (left_inv x)) attribute is_equiv.inv [reducible] -- A more bundled version of equivalence structure equiv (A B : Type) := (to_fun : A → B) (to_is_equiv : is_equiv to_fun) namespace is_equiv /- Some instances and closure properties of equivalences -/ postfix ⁻¹ := inv /- a second notation for the inverse, which is not overloaded -/ postfix [parsing_only] `⁻¹ᶠ`:std.prec.max_plus := inv section variables {A B C : Type} (f : A → B) (g : B → C) {f' : A → B} -- The variant of mk' where f is explicit. protected abbreviation mk [constructor] := @is_equiv.mk' A B f -- The identity function is an equivalence. definition is_equiv_id [instance] [constructor] (A : Type) : (is_equiv (id : A → A)) := is_equiv.mk id id (λa, idp) (λa, idp) (λa, idp) -- The composition of two equivalences is, again, an equivalence. definition is_equiv_compose [constructor] [Hf : is_equiv f] [Hg : is_equiv g] : is_equiv (g ∘ f) := is_equiv.mk (g ∘ f) (f⁻¹ ∘ g⁻¹) abstract (λc, ap g (right_inv f (g⁻¹ c)) ⬝ right_inv g c) end abstract (λa, ap (inv f) (left_inv g (f a)) ⬝ left_inv f a) end abstract (λa, (whisker_left _ (adj g (f a))) ⬝ (ap_con g _ _)⁻¹ ⬝ ap02 g ((ap_con_eq_con (right_inv f) (left_inv g (f a)))⁻¹ ⬝ (ap_compose f (inv f) _ ◾ adj f a) ⬝ (ap_con f _ _)⁻¹ ) ⬝ (ap_compose g f _)⁻¹) end -- Any function equal to an equivalence is an equivlance as well. variable {f} definition is_equiv_eq_closed [Hf : is_equiv f] (Heq : f = f') : is_equiv f' := eq.rec_on Heq Hf end section parameters {A B : Type} (f : A → B) (g : B → A) (ret : Πb, f (g b) = b) (sec : Πa, g (f a) = a) definition adjointify_left_inv' (a : A) : g (f a) = a := ap g (ap f (inverse (sec a))) ⬝ ap g (ret (f a)) ⬝ sec a theorem adjointify_adj' (a : A) : ret (f a) = ap f (adjointify_left_inv' a) := let fgretrfa := ap f (ap g (ret (f a))) in let fgfinvsect := ap f (ap g (ap f (sec a)⁻¹)) in let fgfa := f (g (f a)) in let retrfa := ret (f a) in have eq1 : ap f (sec a) = _, from calc ap f (sec a) = idp ⬝ ap f (sec a) : by rewrite idp_con ... = (ret (f a) ⬝ (ret (f a))⁻¹) ⬝ ap f (sec a) : by rewrite con.right_inv ... = ((ret fgfa)⁻¹ ⬝ ap (f ∘ g) (ret (f a))) ⬝ ap f (sec a) : by rewrite con_ap_eq_con ... = ((ret fgfa)⁻¹ ⬝ fgretrfa) ⬝ ap f (sec a) : by rewrite ap_compose ... = (ret fgfa)⁻¹ ⬝ (fgretrfa ⬝ ap f (sec a)) : by rewrite con.assoc, have eq2 : ap f (sec a) ⬝ idp = (ret fgfa)⁻¹ ⬝ (fgretrfa ⬝ ap f (sec a)), from !con_idp ⬝ eq1, have eq3 : idp = _, from calc idp = (ap f (sec a))⁻¹ ⬝ ((ret fgfa)⁻¹ ⬝ (fgretrfa ⬝ ap f (sec a))) : eq_inv_con_of_con_eq eq2 ... = ((ap f (sec a))⁻¹ ⬝ (ret fgfa)⁻¹) ⬝ (fgretrfa ⬝ ap f (sec a)) : by rewrite con.assoc' ... = (ap f (sec a)⁻¹ ⬝ (ret fgfa)⁻¹) ⬝ (fgretrfa ⬝ ap f (sec a)) : by rewrite ap_inv ... = ((ap f (sec a)⁻¹ ⬝ (ret fgfa)⁻¹) ⬝ fgretrfa) ⬝ ap f (sec a) : by rewrite con.assoc' ... = ((retrfa⁻¹ ⬝ ap (f ∘ g) (ap f (sec a)⁻¹)) ⬝ fgretrfa) ⬝ ap f (sec a) : by rewrite con_ap_eq_con ... = ((retrfa⁻¹ ⬝ fgfinvsect) ⬝ fgretrfa) ⬝ ap f (sec a) : by rewrite ap_compose ... = (retrfa⁻¹ ⬝ (fgfinvsect ⬝ fgretrfa)) ⬝ ap f (sec a) : by rewrite con.assoc' ... = retrfa⁻¹ ⬝ ap f (ap g (ap f (sec a)⁻¹) ⬝ ap g (ret (f a))) ⬝ ap f (sec a) : by rewrite ap_con ... = retrfa⁻¹ ⬝ (ap f (ap g (ap f (sec a)⁻¹) ⬝ ap g (ret (f a))) ⬝ ap f (sec a)) : by rewrite con.assoc' ... = retrfa⁻¹ ⬝ ap f ((ap g (ap f (sec a)⁻¹) ⬝ ap g (ret (f a))) ⬝ sec a) : by rewrite -ap_con, show ret (f a) = ap f ((ap g (ap f (sec a)⁻¹) ⬝ ap g (ret (f a))) ⬝ sec a), from eq_of_idp_eq_inv_con eq3 definition adjointify [constructor] : is_equiv f := is_equiv.mk f g ret adjointify_left_inv' adjointify_adj' end -- Any function pointwise equal to an equivalence is an equivalence as well. definition homotopy_closed [constructor] {A B : Type} (f : A → B) {f' : A → B} [Hf : is_equiv f] (Hty : f ~ f') : is_equiv f' := adjointify f' (inv f) (λ b, (Hty (inv f b))⁻¹ ⬝ right_inv f b) (λ a, (ap (inv f) (Hty a))⁻¹ ⬝ left_inv f a) definition inv_homotopy_closed [constructor] {A B : Type} {f : A → B} {f' : B → A} [Hf : is_equiv f] (Hty : f⁻¹ ~ f') : is_equiv f := adjointify f f' (λ b, ap f !Hty⁻¹ ⬝ right_inv f b) (λ a, !Hty⁻¹ ⬝ left_inv f a) definition is_equiv_up [instance] [constructor] (A : Type) : is_equiv (up : A → lift A) := adjointify up down (λa, by induction a;reflexivity) (λa, idp) section variables {A B C : Type} (f : A → B) {f' : A → B} [Hf : is_equiv f] (g : B → C) include Hf --The inverse of an equivalence is, again, an equivalence. definition is_equiv_inv [instance] [constructor] : is_equiv f⁻¹ := adjointify f⁻¹ f (left_inv f) (right_inv f) definition cancel_right (g : B → C) [Hgf : is_equiv (g ∘ f)] : (is_equiv g) := have Hfinv : is_equiv f⁻¹, from is_equiv_inv f, @homotopy_closed _ _ _ _ (is_equiv_compose f⁻¹ (g ∘ f)) (λb, ap g (@right_inv _ _ f _ b)) definition cancel_left (g : C → A) [Hgf : is_equiv (f ∘ g)] : (is_equiv g) := have Hfinv : is_equiv f⁻¹, from is_equiv_inv f, @homotopy_closed _ _ _ _ (is_equiv_compose (f ∘ g) f⁻¹) (λa, left_inv f (g a)) definition eq_of_fn_eq_fn' {x y : A} (q : f x = f y) : x = y := (left_inv f x)⁻¹ ⬝ ap f⁻¹ q ⬝ left_inv f y theorem ap_eq_of_fn_eq_fn' {x y : A} (q : f x = f y) : ap f (eq_of_fn_eq_fn' f q) = q := begin rewrite [↑eq_of_fn_eq_fn',+ap_con,ap_inv,-+adj,-ap_compose,con.assoc, ap_con_eq_con_ap (right_inv f) q,inv_con_cancel_left,ap_id], end definition is_equiv_ap [instance] [constructor] (x y : A) : is_equiv (ap f : x = y → f x = f y) := adjointify (ap f) (eq_of_fn_eq_fn' f) abstract (λq, !ap_con ⬝ whisker_right !ap_con _ ⬝ ((!ap_inv ⬝ inverse2 (adj f _)⁻¹) ◾ (inverse (ap_compose f f⁻¹ _)) ◾ (adj f _)⁻¹) ⬝ con_ap_con_eq_con_con (right_inv f) _ _ ⬝ whisker_right !con.left_inv _ ⬝ !idp_con) end abstract (λp, whisker_right (whisker_left _ (ap_compose f⁻¹ f _)⁻¹) _ ⬝ con_ap_con_eq_con_con (left_inv f) _ _ ⬝ whisker_right !con.left_inv _ ⬝ !idp_con) end -- The function equiv_rect says that given an equivalence f : A → B, -- and a hypothesis from B, one may always assume that the hypothesis -- is in the image of e. -- In fibrational terms, if we have a fibration over B which has a section -- once pulled back along an equivalence f : A → B, then it has a section -- over all of B. definition is_equiv_rect (P : B → Type) (g : Πa, P (f a)) (b : B) : P b := right_inv f b ▸ g (f⁻¹ b) definition is_equiv_rect' (P : A → B → Type) (g : Πb, P (f⁻¹ b) b) (a : A) : P a (f a) := left_inv f a ▸ g (f a) definition is_equiv_rect_comp (P : B → Type) (df : Π (x : A), P (f x)) (x : A) : is_equiv_rect f P df (f x) = df x := calc is_equiv_rect f P df (f x) = right_inv f (f x) ▸ df (f⁻¹ (f x)) : by esimp ... = ap f (left_inv f x) ▸ df (f⁻¹ (f x)) : by rewrite -adj ... = left_inv f x ▸ df (f⁻¹ (f x)) : by rewrite -tr_compose ... = df x : by rewrite (apdt df (left_inv f x)) theorem adj_inv (b : B) : left_inv f (f⁻¹ b) = ap f⁻¹ (right_inv f b) := is_equiv_rect f _ (λa, eq.cancel_right (left_inv f (id a)) (whisker_left _ !ap_id⁻¹ ⬝ (ap_con_eq_con_ap (left_inv f) (left_inv f a))⁻¹) ⬝ !ap_compose ⬝ ap02 f⁻¹ (adj f a)⁻¹) b end section variables {A B C : Type} {f : A → B} [Hf : is_equiv f] include Hf section rewrite_rules variables {a : A} {b : B} definition eq_of_eq_inv (p : a = f⁻¹ b) : f a = b := ap f p ⬝ right_inv f b definition eq_of_inv_eq (p : f⁻¹ b = a) : b = f a := (eq_of_eq_inv p⁻¹)⁻¹ definition inv_eq_of_eq (p : b = f a) : f⁻¹ b = a := ap f⁻¹ p ⬝ left_inv f a definition eq_inv_of_eq (p : f a = b) : a = f⁻¹ b := (inv_eq_of_eq p⁻¹)⁻¹ end rewrite_rules variable (f) section pre_compose variables (α : A → C) (β : B → C) definition homotopy_of_homotopy_inv_pre (p : β ~ α ∘ f⁻¹) : β ∘ f ~ α := λ a, p (f a) ⬝ ap α (left_inv f a) definition homotopy_of_inv_homotopy_pre (p : α ∘ f⁻¹ ~ β) : α ~ β ∘ f := λ a, (ap α (left_inv f a))⁻¹ ⬝ p (f a) definition inv_homotopy_of_homotopy_pre (p : α ~ β ∘ f) : α ∘ f⁻¹ ~ β := λ b, p (f⁻¹ b) ⬝ ap β (right_inv f b) definition homotopy_inv_of_homotopy_pre (p : β ∘ f ~ α) : β ~ α ∘ f⁻¹ := λ b, (ap β (right_inv f b))⁻¹ ⬝ p (f⁻¹ b) end pre_compose section post_compose variables (α : C → A) (β : C → B) definition homotopy_of_homotopy_inv_post (p : α ~ f⁻¹ ∘ β) : f ∘ α ~ β := λ c, ap f (p c) ⬝ (right_inv f (β c)) definition homotopy_of_inv_homotopy_post (p : f⁻¹ ∘ β ~ α) : β ~ f ∘ α := λ c, (right_inv f (β c))⁻¹ ⬝ ap f (p c) definition inv_homotopy_of_homotopy_post (p : β ~ f ∘ α) : f⁻¹ ∘ β ~ α := λ c, ap f⁻¹ (p c) ⬝ (left_inv f (α c)) definition homotopy_inv_of_homotopy_post (p : f ∘ α ~ β) : α ~ f⁻¹ ∘ β := λ c, (left_inv f (α c))⁻¹ ⬝ ap f⁻¹ (p c) end post_compose end --Transporting is an equivalence definition is_equiv_tr [constructor] {A : Type} (P : A → Type) {x y : A} (p : x = y) : (is_equiv (transport P p)) := is_equiv.mk _ (transport P p⁻¹) (tr_inv_tr p) (inv_tr_tr p) (tr_inv_tr_lemma p) section variables {A : Type} {B C : A → Type} (f : Π{a}, B a → C a) [H : Πa, is_equiv (@f a)] {g : A → A} {g' : A → A} (h : Π{a}, B (g' a) → B (g a)) (h' : Π{a}, C (g' a) → C (g a)) include H definition inv_commute' (p : Π⦃a : A⦄ (b : B (g' a)), f (h b) = h' (f b)) {a : A} (c : C (g' a)) : f⁻¹ (h' c) = h (f⁻¹ c) := eq_of_fn_eq_fn' f (right_inv f (h' c) ⬝ ap h' (right_inv f c)⁻¹ ⬝ (p (f⁻¹ c))⁻¹) definition fun_commute_of_inv_commute' (p : Π⦃a : A⦄ (c : C (g' a)), f⁻¹ (h' c) = h (f⁻¹ c)) {a : A} (b : B (g' a)) : f (h b) = h' (f b) := eq_of_fn_eq_fn' f⁻¹ (left_inv f (h b) ⬝ ap h (left_inv f b)⁻¹ ⬝ (p (f b))⁻¹) definition ap_inv_commute' (p : Π⦃a : A⦄ (b : B (g' a)), f (h b) = h' (f b)) {a : A} (c : C (g' a)) : ap f (inv_commute' @f @h @h' p c) = right_inv f (h' c) ⬝ ap h' (right_inv f c)⁻¹ ⬝ (p (f⁻¹ c))⁻¹ := !ap_eq_of_fn_eq_fn' end end is_equiv open is_equiv namespace eq local attribute is_equiv_tr [instance] definition tr_inv_fn {A : Type} {B : A → Type} {a a' : A} (p : a = a') : transport B p⁻¹ = (transport B p)⁻¹ := idp definition tr_inv {A : Type} {B : A → Type} {a a' : A} (p : a = a') (b : B a') : p⁻¹ ▸ b = (transport B p)⁻¹ b := idp definition cast_inv_fn {A B : Type} (p : A = B) : cast p⁻¹ = (cast p)⁻¹ := idp definition cast_inv {A B : Type} (p : A = B) (b : B) : cast p⁻¹ b = (cast p)⁻¹ b := idp end eq infix ` ≃ `:25 := equiv attribute equiv.to_is_equiv [instance] namespace equiv attribute to_fun [coercion] section variables {A B C : Type} protected definition MK [reducible] [constructor] (f : A → B) (g : B → A) (right_inv : Πb, f (g b) = b) (left_inv : Πa, g (f a) = a) : A ≃ B := equiv.mk f (adjointify f g right_inv left_inv) definition to_inv [reducible] [unfold 3] (f : A ≃ B) : B → A := f⁻¹ definition to_right_inv [reducible] [unfold 3] (f : A ≃ B) (b : B) : f (f⁻¹ b) = b := right_inv f b definition to_left_inv [reducible] [unfold 3] (f : A ≃ B) (a : A) : f⁻¹ (f a) = a := left_inv f a protected definition refl [refl] [constructor] : A ≃ A := equiv.mk id !is_equiv_id protected definition symm [symm] [constructor] (f : A ≃ B) : B ≃ A := equiv.mk f⁻¹ !is_equiv_inv protected definition trans [trans] [constructor] (f : A ≃ B) (g : B ≃ C) : A ≃ C := equiv.mk (g ∘ f) !is_equiv_compose infixl ` ⬝e `:75 := equiv.trans postfix `⁻¹ᵉ`:(max + 1) := equiv.symm -- notation for inverse which is not overloaded abbreviation erfl [constructor] := @equiv.refl definition to_inv_trans [reducible] [unfold_full] (f : A ≃ B) (g : B ≃ C) : to_inv (f ⬝e g) = to_fun (g⁻¹ᵉ ⬝e f⁻¹ᵉ) := idp definition equiv_change_fun [constructor] (f : A ≃ B) {f' : A → B} (Heq : f ~ f') : A ≃ B := equiv.mk f' (is_equiv.homotopy_closed f Heq) definition equiv_change_inv [constructor] (f : A ≃ B) {f' : B → A} (Heq : f⁻¹ ~ f') : A ≃ B := equiv.mk f (inv_homotopy_closed Heq) --rename: eq_equiv_fn_eq_of_is_equiv definition eq_equiv_fn_eq [constructor] (f : A → B) [H : is_equiv f] (a b : A) : (a = b) ≃ (f a = f b) := equiv.mk (ap f) !is_equiv_ap --rename: eq_equiv_fn_eq definition eq_equiv_fn_eq_of_equiv [constructor] (f : A ≃ B) (a b : A) : (a = b) ≃ (f a = f b) := equiv.mk (ap f) !is_equiv_ap definition equiv_ap [constructor] (P : A → Type) {a b : A} (p : a = b) : P a ≃ P b := equiv.mk (transport P p) !is_equiv_tr definition equiv_of_eq [constructor] {A B : Type} (p : A = B) : A ≃ B := equiv.mk (cast p) !is_equiv_tr definition eq_of_fn_eq_fn (f : A ≃ B) {x y : A} (q : f x = f y) : x = y := (left_inv f x)⁻¹ ⬝ ap f⁻¹ q ⬝ left_inv f y definition eq_of_fn_eq_fn_inv (f : A ≃ B) {x y : B} (q : f⁻¹ x = f⁻¹ y) : x = y := (right_inv f x)⁻¹ ⬝ ap f q ⬝ right_inv f y --we need this theorem for the funext_of_ua proof theorem inv_eq {A B : Type} (eqf eqg : A ≃ B) (p : eqf = eqg) : (to_fun eqf)⁻¹ = (to_fun eqg)⁻¹ := eq.rec_on p idp definition equiv_of_equiv_of_eq [trans] {A B C : Type} (p : A = B) (q : B ≃ C) : A ≃ C := equiv_of_eq p ⬝e q definition equiv_of_eq_of_equiv [trans] {A B C : Type} (p : A ≃ B) (q : B = C) : A ≃ C := p ⬝e equiv_of_eq q definition equiv_lift [constructor] (A : Type) : A ≃ lift A := equiv.mk up _ definition equiv_rect (f : A ≃ B) (P : B → Type) (g : Πa, P (f a)) (b : B) : P b := right_inv f b ▸ g (f⁻¹ b) definition equiv_rect' (f : A ≃ B) (P : A → B → Type) (g : Πb, P (f⁻¹ b) b) (a : A) : P a (f a) := left_inv f a ▸ g (f a) definition equiv_rect_comp (f : A ≃ B) (P : B → Type) (df : Π (x : A), P (f x)) (x : A) : equiv_rect f P df (f x) = df x := calc equiv_rect f P df (f x) = right_inv f (f x) ▸ df (f⁻¹ (f x)) : by esimp ... = ap f (left_inv f x) ▸ df (f⁻¹ (f x)) : by rewrite -adj ... = left_inv f x ▸ df (f⁻¹ (f x)) : by rewrite -tr_compose ... = df x : by rewrite (apdt df (left_inv f x)) end section variables {A : Type} {B C : A → Type} (f : Π{a}, B a ≃ C a) {g : A → A} {g' : A → A} (h : Π{a}, B (g' a) → B (g a)) (h' : Π{a}, C (g' a) → C (g a)) definition inv_commute (p : Π⦃a : A⦄ (b : B (g' a)), f (h b) = h' (f b)) {a : A} (c : C (g' a)) : f⁻¹ (h' c) = h (f⁻¹ c) := inv_commute' @f @h @h' p c definition fun_commute_of_inv_commute (p : Π⦃a : A⦄ (c : C (g' a)), f⁻¹ (h' c) = h (f⁻¹ c)) {a : A} (b : B (g' a)) : f (h b) = h' (f b) := fun_commute_of_inv_commute' @f @h @h' p b end infixl ` ⬝pe `:75 := equiv_of_equiv_of_eq infixl ` ⬝ep `:75 := equiv_of_eq_of_equiv end equiv open equiv namespace is_equiv definition is_equiv_of_equiv_of_homotopy [constructor] {A B : Type} (f : A ≃ B) {f' : A → B} (Hty : f ~ f') : is_equiv f' := homotopy_closed f Hty end is_equiv export [unfold] equiv export [unfold] is_equiv