---------------------------------------------------------------------------------------------------- -- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura ---------------------------------------------------------------------------------------------------- import logic.classes.decidable tools.tactic open decidable tactic eq_ops definition ite (c : Prop) {H : decidable c} {A : Type} (t e : A) : A := decidable.rec_on H (assume Hc, t) (assume Hnc, e) notation `if` c `then` t `else` e:45 := ite c t e theorem if_pos {c : Prop} {H : decidable c} (Hc : c) {A : Type} {t e : A} : (if c then t else e) = t := decidable_rec (assume Hc : c, refl (@ite c (inl Hc) A t e)) (assume Hnc : ¬c, absurd Hc Hnc) H theorem if_neg {c : Prop} {H : decidable c} (Hnc : ¬c) {A : Type} {t e : A} : (if c then t else e) = e := decidable_rec (assume Hc : c, absurd Hc Hnc) (assume Hnc : ¬c, refl (@ite c (inr Hnc) A t e)) H theorem if_t_t (c : Prop) {H : decidable c} {A : Type} (t : A) : (if c then t else t) = t := decidable_rec (assume Hc : c, refl (@ite c (inl Hc) A t t)) (assume Hnc : ¬c, refl (@ite c (inr Hnc) A t t)) H theorem if_true {A : Type} (t e : A) : (if true then t else e) = t := if_pos trivial theorem if_false {A : Type} (t e : A) : (if false then t else e) = e := if_neg not_false_trivial theorem if_cond_congr {c₁ c₂ : Prop} {H₁ : decidable c₁} {H₂ : decidable c₂} (Heq : c₁ ↔ c₂) {A : Type} (t e : A) : (if c₁ then t else e) = (if c₂ then t else e) := decidable.rec_on H₁ (assume Hc₁ : c₁, decidable.rec_on H₂ (assume Hc₂ : c₂, if_pos Hc₁ ⬝ (if_pos Hc₂)⁻¹) (assume Hnc₂ : ¬c₂, absurd (iff_elim_left Heq Hc₁) Hnc₂)) (assume Hnc₁ : ¬c₁, decidable.rec_on H₂ (assume Hc₂ : c₂, absurd (iff_elim_right Heq Hc₂) Hnc₁) (assume Hnc₂ : ¬c₂, if_neg Hnc₁ ⬝ (if_neg Hnc₂)⁻¹)) theorem if_congr_aux {c₁ c₂ : Prop} {H₁ : decidable c₁} {H₂ : decidable c₂} {A : Type} {t₁ t₂ e₁ e₂ : A} (Hc : c₁ ↔ c₂) (Ht : t₁ = t₂) (He : e₁ = e₂) : (if c₁ then t₁ else e₁) = (if c₂ then t₂ else e₂) := Ht ▸ He ▸ (if_cond_congr Hc t₁ e₁) theorem if_congr {c₁ c₂ : Prop} {H₁ : decidable c₁} {A : Type} {t₁ t₂ e₁ e₂ : A} (Hc : c₁ ↔ c₂) (Ht : t₁ = t₂) (He : e₁ = e₂) : (if c₁ then t₁ else e₁) = (@ite c₂ (decidable_iff_equiv H₁ Hc) A t₂ e₂) := have H2 [fact] : decidable c₂, from (decidable_iff_equiv H₁ Hc), if_congr_aux Hc Ht He