definition rr [unfold-m] {A : Type} {a : A} := eq.refl a constants f g : Π {A : Type}, A → A example (A : Type) (a b : A) (C : A → Type) (H : C a) (f g : C a → C a) : f = g → f (eq.rec H rr) = g H := begin intros, esimp, state, congruence, assumption end example (A : Type) (a b : A) (C : A → Type) (H : C a) (f g : C a → C a) : f = g → f (eq.rec_on rr H) = g H := begin intros, esimp, state, congruence, assumption end