-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura import logic.axioms.hilbert logic.axioms.funext open eq_ops nonempty inhabited -- Diaconescu’s theorem -- Show that Excluded middle follows from -- Hilbert's choice operator, function extensionality and Prop extensionality section hypothesis propext {a b : Prop} : (a → b) → (b → a) → a = b parameter p : Prop definition u [private] := epsilon (λx, x = true ∨ p) definition v [private] := epsilon (λx, x = false ∨ p) lemma u_def [private] : u = true ∨ p := epsilon_spec (exists_intro true (or.inl rfl)) lemma v_def [private] : v = false ∨ p := epsilon_spec (exists_intro false (or.inl rfl)) lemma uv_implies_p [private] : ¬(u = v) ∨ p := or.elim u_def (assume Hut : u = true, or.elim v_def (assume Hvf : v = false, have Hne : ¬(u = v), from Hvf⁻¹ ▸ Hut⁻¹ ▸ true_ne_false, or.inl Hne) (assume Hp : p, or.inr Hp)) (assume Hp : p, or.inr Hp) lemma p_implies_uv [private] : p → u = v := assume Hp : p, have Hpred : (λ x, x = true ∨ p) = (λ x, x = false ∨ p), from funext (take x : Prop, have Hl : (x = true ∨ p) → (x = false ∨ p), from assume A, or.inr Hp, have Hr : (x = false ∨ p) → (x = true ∨ p), from assume A, or.inr Hp, show (x = true ∨ p) = (x = false ∨ p), from propext Hl Hr), show u = v, from Hpred ▸ (eq.refl (epsilon (λ x, x = true ∨ p))) theorem em : p ∨ ¬p := have H : ¬(u = v) → ¬p, from mt p_implies_uv, or.elim uv_implies_p (assume Hne : ¬(u = v), or.inr (H Hne)) (assume Hp : p, or.inl Hp) end