---------------------------------------------------------------------------------------------------- -- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura ---------------------------------------------------------------------------------------------------- import .eq .quantifiers open eq_ops definition cast {A B : Type} (H : A = B) (a : A) : B := eq.rec a H theorem cast_refl {A : Type} (a : A) : cast (eq.refl A) a = a := eq.refl (cast (eq.refl A) a) theorem cast_proof_irrel {A B : Type} (H1 H2 : A = B) (a : A) : cast H1 a = cast H2 a := eq.refl (cast H1 a) theorem cast_eq {A : Type} (H : A = A) (a : A) : cast H a = a := calc cast H a = cast (eq.refl A) a : cast_proof_irrel H (eq.refl A) a ... = a : cast_refl a definition heq {A B : Type} (a : A) (b : B) := ∃H, cast H a = b infixl `==`:50 := heq theorem heq_elim {A B : Type} {C : Prop} {a : A} {b : B} (H1 : a == b) (H2 : ∀ (Hab : A = B), cast Hab a = b → C) : C := obtain w Hw, from H1, H2 w Hw theorem heq_type_eq {A B : Type} {a : A} {b : B} (H : a == b) : A = B := obtain w Hw, from H, w theorem eq_to_heq {A : Type} {a b : A} (H : a = b) : a == b := exists_intro (eq.refl A) (cast_refl a ⬝ H) theorem heq_to_eq {A : Type} {a b : A} (H : a == b) : a = b := obtain (w : A = A) (Hw : cast w a = b), from H, calc a = cast w a : (cast_eq w a)⁻¹ ... = b : Hw theorem hrefl {A : Type} (a : A) : a == a := eq_to_heq (eq.refl a) theorem heqt_elim {a : Prop} (H : a == true) : a := eq_true_elim (heq_to_eq H) opaque_hint (hiding cast) theorem hsubst {A B : Type} {a : A} {b : B} {P : ∀ (T : Type), T → Prop} (H1 : a == b) (H2 : P A a) : P B b := have Haux1 : ∀ H : A = A, P A (cast H a), from assume H : A = A, (cast_eq H a)⁻¹ ▸ H2, obtain (Heq : A = B) (Hw : cast Heq a = b), from H1, have Haux2 : P B (cast Heq a), from eq.subst Heq Haux1 Heq, Hw ▸ Haux2 theorem hsymm {A B : Type} {a : A} {b : B} (H : a == b) : b == a := hsubst H (hrefl a) theorem htrans {A B C : Type} {a : A} {b : B} {c : C} (H1 : a == b) (H2 : b == c) : a == c := hsubst H2 H1 theorem htrans_left {A B : Type} {a : A} {b c : B} (H1 : a == b) (H2 : b = c) : a == c := htrans H1 (eq_to_heq H2) theorem htrans_right {A C : Type} {a b : A} {c : C} (H1 : a = b) (H2 : b == c) : a == c := htrans (eq_to_heq H1) H2 calc_trans htrans calc_trans htrans_left calc_trans htrans_right theorem type_eq {A B : Type} {a : A} {b : B} (H : a == b) : A = B := hsubst H (eq.refl A) theorem cast_heq {A B : Type} (H : A = B) (a : A) : cast H a == a := have H1 : ∀ (H : A = A) (a : A), cast H a == a, from assume H a, eq_to_heq (cast_eq H a), eq.subst H H1 H a theorem cast_eq_to_heq {A B : Type} {a : A} {b : B} {H : A = B} (H1 : cast H a = b) : a == b := calc a == cast H a : hsymm (cast_heq H a) ... = b : H1 theorem cast_trans {A B C : Type} (Hab : A = B) (Hbc : B = C) (a : A) : cast Hbc (cast Hab a) = cast (Hab ⬝ Hbc) a := heq_to_eq (calc cast Hbc (cast Hab a) == cast Hab a : cast_heq Hbc (cast Hab a) ... == a : cast_heq Hab a ... == cast (Hab ⬝ Hbc) a : hsymm (cast_heq (Hab ⬝ Hbc) a)) theorem dcongr_arg {A : Type} {B : A → Type} (f : Πx, B x) {a b : A} (H : a = b) : f a == f b := have e1 : ∀ (H : B a = B a), cast H (f a) = f a, from assume H, cast_eq H (f a), have e2 : ∀ (H : B a = B b), cast H (f a) = f b, from H ▸ e1, have e3 : cast (congr_arg B H) (f a) = f b, from e2 (congr_arg B H), cast_eq_to_heq e3 theorem pi_eq {A : Type} {B B' : A → Type} (H : B = B') : (Π x, B x) = (Π x, B' x) := H ▸ (eq.refl (Π x, B x)) theorem cast_app' {A : Type} {B B' : A → Type} (H : B = B') (f : Π x, B x) (a : A) : cast (pi_eq H) f a == f a := have H1 : ∀ (H : (Π x, B x) = (Π x, B x)), cast H f a == f a, from assume H, eq_to_heq (congr_fun (cast_eq H f) a), have H2 : ∀ (H : (Π x, B x) = (Π x, B' x)), cast H f a == f a, from H ▸ H1, H2 (pi_eq H) theorem cast_pull {A : Type} {B B' : A → Type} (H : B = B') (f : Π x, B x) (a : A) : cast (pi_eq H) f a = cast (congr_fun H a) (f a) := heq_to_eq (calc cast (pi_eq H) f a == f a : cast_app' H f a ... == cast (congr_fun H a) (f a) : hsymm (cast_heq (congr_fun H a) (f a))) theorem hcongr_fun' {A : Type} {B B' : A → Type} {f : Π x, B x} {f' : Π x, B' x} (a : A) (H1 : f == f') (H2 : B = B') : f a == f' a := heq_elim H1 (λ (Ht : (Π x, B x) = (Π x, B' x)) (Hw : cast Ht f = f'), calc f a == cast (pi_eq H2) f a : hsymm (cast_app' H2 f a) ... = cast Ht f a : eq.refl (cast Ht f a) ... = f' a : congr_fun Hw a)