import data.nat.basic open nat open eq set_option pp.coercion true namespace foo theorem trans {a b c : nat} (H1 : a = b) (H2 : b = c) : a = c := trans H1 H2 end foo open foo theorem tst (a b : nat) (H0 : b = a) (H : b = 0) : a = 0 := have H1 : a = b, from symm H0, trans H1 H definition f (a b : nat) := let x := 3 in a + x