/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura, Jeremy Avigad, Haitao Zhang General operations on functions. -/ prelude import init.prod init.funext init.logic namespace function variables {A : Type} {B : Type} {C : Type} {D : Type} {E : Type} definition compose [reducible] [unfold_full] (f : B → C) (g : A → B) : A → C := λx, f (g x) definition compose_right [reducible] [unfold_full] (f : B → B → B) (g : A → B) : B → A → B := λ b a, f b (g a) definition compose_left [reducible] [unfold_full] (f : B → B → B) (g : A → B) : A → B → B := λ a b, f (g a) b definition on_fun [reducible] [unfold_full] (f : B → B → C) (g : A → B) : A → A → C := λx y, f (g x) (g y) definition combine [reducible] [unfold_full] (f : A → B → C) (op : C → D → E) (g : A → B → D) : A → B → E := λx y, op (f x y) (g x y) definition const [reducible] [unfold_full] (B : Type) (a : A) : B → A := λx, a definition dcompose [reducible] [unfold_full] {B : A → Type} {C : Π {x : A}, B x → Type} (f : Π {x : A} (y : B x), C y) (g : Πx, B x) : Πx, C (g x) := λx, f (g x) definition swap [reducible] [unfold_full] {C : A → B → Type} (f : Πx y, C x y) : Πy x, C x y := λy x, f x y definition app [reducible] {B : A → Type} (f : Πx, B x) (x : A) : B x := f x definition curry [reducible] [unfold_full] : (A × B → C) → A → B → C := λ f a b, f (a, b) definition uncurry [reducible] [unfold 5] : (A → B → C) → (A × B → C) := λ f p, match p with (a, b) := f a b end theorem curry_uncurry (f : A → B → C) : curry (uncurry f) = f := rfl theorem uncurry_curry (f : A × B → C) : uncurry (curry f) = f := funext (λ p, match p with (a, b) := rfl end) infixr ` ∘ ` := compose infixr ` ∘' `:60 := dcompose infixl ` on `:1 := on_fun infixr ` $ `:1 := app notation f ` -[` op `]- ` g := combine f op g lemma left_id (f : A → B) : id ∘ f = f := rfl lemma right_id (f : A → B) : f ∘ id = f := rfl theorem compose.assoc (f : C → D) (g : B → C) (h : A → B) : (f ∘ g) ∘ h = f ∘ (g ∘ h) := rfl theorem compose.left_id (f : A → B) : id ∘ f = f := rfl theorem compose.right_id (f : A → B) : f ∘ id = f := rfl theorem compose_const_right (f : B → C) (b : B) : f ∘ (const A b) = const A (f b) := rfl definition injective [reducible] (f : A → B) : Prop := ∀ ⦃a₁ a₂⦄, f a₁ = f a₂ → a₁ = a₂ theorem injective_compose {g : B → C} {f : A → B} (Hg : injective g) (Hf : injective f) : injective (g ∘ f) := take a₁ a₂, assume Heq, Hf (Hg Heq) definition surjective [reducible] (f : A → B) : Prop := ∀ b, ∃ a, f a = b theorem surjective_compose {g : B → C} {f : A → B} (Hg : surjective g) (Hf : surjective f) : surjective (g ∘ f) := take c, obtain b (Hb : g b = c), from Hg c, obtain a (Ha : f a = b), from Hf b, exists.intro a (eq.trans (congr_arg g Ha) Hb) definition bijective (f : A → B) := injective f ∧ surjective f theorem bijective_compose {g : B → C} {f : A → B} (Hg : bijective g) (Hf : bijective f) : bijective (g ∘ f) := obtain Hginj Hgsurj, from Hg, obtain Hfinj Hfsurj, from Hf, and.intro (injective_compose Hginj Hfinj) (surjective_compose Hgsurj Hfsurj) -- g is a left inverse to f definition left_inverse (g : B → A) (f : A → B) : Prop := ∀x, g (f x) = x definition id_of_left_inverse {g : B → A} {f : A → B} : left_inverse g f → g ∘ f = id := assume h, funext h definition has_left_inverse (f : A → B) : Prop := ∃ finv : B → A, left_inverse finv f -- g is a right inverse to f definition right_inverse (g : B → A) (f : A → B) : Prop := left_inverse f g definition id_of_right_inverse {g : B → A} {f : A → B} : right_inverse g f → f ∘ g = id := assume h, funext h definition has_right_inverse (f : A → B) : Prop := ∃ finv : B → A, right_inverse finv f theorem injective_of_left_inverse {g : B → A} {f : A → B} : left_inverse g f → injective f := assume h, take a b, assume faeqfb, calc a = g (f a) : by rewrite h ... = g (f b) : faeqfb ... = b : by rewrite h theorem injective_of_has_left_inverse {f : A → B} : has_left_inverse f → injective f := assume h, obtain (finv : B → A) (inv : left_inverse finv f), from h, injective_of_left_inverse inv theorem right_inverse_of_injective_of_left_inverse {f : A → B} {g : B → A} (injf : injective f) (lfg : left_inverse f g) : right_inverse f g := take x, have H : f (g (f x)) = f x, from lfg (f x), injf H theorem surjective_of_has_right_inverse {f : A → B} : has_right_inverse f → surjective f := assume h, take b, obtain (finv : B → A) (inv : right_inverse finv f), from h, let a : A := finv b in have h : f a = b, from calc f a = (f ∘ finv) b : rfl ... = id b : by rewrite inv ... = b : rfl, exists.intro a h theorem left_inverse_of_surjective_of_right_inverse {f : A → B} {g : B → A} (surjf : surjective f) (rfg : right_inverse f g) : left_inverse f g := take y, obtain x (Hx : f x = y), from surjf y, calc f (g y) = f (g (f x)) : Hx ... = f x : rfg ... = y : Hx theorem injective_id : injective (@id A) := take a₁ a₂ H, H theorem surjective_id : surjective (@id A) := take a, exists.intro a rfl theorem bijective_id : bijective (@id A) := and.intro injective_id surjective_id end function -- copy reducible annotations to top-level export [reducible] [unfold] function