/- Copyright (c) 2015 Haitao Zhang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author : Haitao Zhang -/ import algebra.group data .hom .perm .finsubg namespace group_theory open finset function local attribute perm.f [coercion] private lemma and_left_true {a b : Prop} (Pa : a) : a ∧ b ↔ b := by rewrite [iff_true_intro Pa, true_and] section def variables {G S : Type} [group G] [fintype S] definition is_fixed_point (hom : G → perm S) (H : finset G) (a : S) : Prop := ∀ h, h ∈ H → hom h a = a variables [decidable_eq S] definition orbit (hom : G → perm S) (H : finset G) (a : S) : finset S := image (move_by a) (image hom H) definition fixed_points [reducible] (hom : G → perm S) (H : finset G) : finset S := {a ∈ univ | orbit hom H a = '{a}} variable [decidable_eq G] -- required by {x ∈ H |p x} filtering definition moverset (hom : G → perm S) (H : finset G) (a b : S) : finset G := {f ∈ H | hom f a = b} definition stab (hom : G → perm S) (H : finset G) (a : S) : finset G := {f ∈ H | hom f a = a} end def section orbit_stabilizer variables {G S : Type} [group G] [decidable_eq G] [fintype S] [decidable_eq S] section variables {hom : G → perm S} {H : finset G} {a : S} [Hom : is_hom_class hom] include Hom lemma exists_of_orbit {b : S} : b ∈ orbit hom H a → ∃ h, h ∈ H ∧ hom h a = b := assume Pb, obtain p (Pp₁ : p ∈ image hom H) (Pp₂ : move_by a p = b), from exists_of_mem_image Pb, obtain h (Ph₁ : h ∈ H) (Ph₂ : hom h = p), from exists_of_mem_image Pp₁, have Phab : hom h a = b, from calc hom h a = p a : Ph₂ ... = b : Pp₂, exists.intro h (and.intro Ph₁ Phab) lemma orbit_of_exists {b : S} : (∃ h, h ∈ H ∧ hom h a = b) → b ∈ orbit hom H a := assume Pex, obtain h PinH Phab, from Pex, mem_image (mem_image_of_mem hom PinH) Phab lemma is_fixed_point_of_mem_fixed_points : a ∈ fixed_points hom H → is_fixed_point hom H a := assume Pain, take h, assume Phin, eq_of_mem_singleton (of_mem_sep Pain ▸ orbit_of_exists (exists.intro h (and.intro Phin rfl))) lemma mem_fixed_points_of_exists_of_is_fixed_point : (∃ h, h ∈ H) → is_fixed_point hom H a → a ∈ fixed_points hom H := assume Pex Pfp, mem_sep_of_mem !mem_univ (ext take x, iff.intro (assume Porb, obtain h Phin Pha, from exists_of_orbit Porb, by rewrite [mem_singleton_iff, -Pha, Pfp h Phin]) (obtain h Phin, from Pex, by rewrite mem_singleton_iff; intro Peq; rewrite Peq; apply orbit_of_exists; existsi h; apply and.intro Phin (Pfp h Phin))) lemma is_fixed_point_iff_mem_fixed_points_of_exists : (∃ h, h ∈ H) → (a ∈ fixed_points hom H ↔ is_fixed_point hom H a) := assume Pex, iff.intro is_fixed_point_of_mem_fixed_points (mem_fixed_points_of_exists_of_is_fixed_point Pex) lemma is_fixed_point_iff_mem_fixed_points [finsubgH : is_finsubg H] : a ∈ fixed_points hom H ↔ is_fixed_point hom H a := is_fixed_point_iff_mem_fixed_points_of_exists (exists.intro 1 !finsubg_has_one) lemma is_fixed_point_of_one : is_fixed_point hom ('{1}) a := take h, assume Ph, by rewrite [eq_of_mem_singleton Ph, hom_map_one] lemma fixed_points_of_one : fixed_points hom ('{1}) = univ := ext take s, iff.intro (assume Pl, mem_univ s) (assume Pr, mem_fixed_points_of_exists_of_is_fixed_point (exists.intro 1 !mem_singleton) is_fixed_point_of_one) open fintype lemma card_fixed_points_of_one : card (fixed_points hom ('{1})) = card S := by rewrite [fixed_points_of_one] end -- these are already specified by stab hom H a variables {hom : G → perm S} {H : finset G} {a : S} variable [Hom : is_hom_class hom] include Hom lemma perm_f_mul (f g : G): perm.f ((hom f) * (hom g)) a = ((hom f) ∘ (hom g)) a := rfl lemma stab_lmul {f g : G} : g ∈ stab hom H a → hom (f*g) a = hom f a := assume Pgstab, have hom g a = a, from of_mem_sep Pgstab, calc hom (f*g) a = perm.f ((hom f) * (hom g)) a : is_hom hom ... = ((hom f) ∘ (hom g)) a : by rewrite perm_f_mul ... = (hom f) a : by unfold comp; rewrite this lemma stab_subset : stab hom H a ⊆ H := begin apply subset_of_forall, intro f Pfstab, apply mem_of_mem_sep Pfstab end lemma reverse_move {h g : G} : g ∈ moverset hom H a (hom h a) → hom (h⁻¹*g) a = a := assume Pg, have hom g a = hom h a, from of_mem_sep Pg, calc hom (h⁻¹*g) a = perm.f ((hom h⁻¹) * (hom g)) a : by rewrite (is_hom hom) ... = ((hom h⁻¹) ∘ hom g) a : by rewrite perm_f_mul ... = perm.f ((hom h)⁻¹ * hom h) a : by unfold comp; rewrite [this, perm_f_mul, hom_map_inv hom h] ... = perm.f (1 : perm S) a : by rewrite (mul.left_inv (hom h)) ... = a : by esimp lemma moverset_inj_on_orbit : set.inj_on (moverset hom H a) (ts (orbit hom H a)) := take b1 b2, assume Pb1, obtain h1 Ph1₁ Ph1₂, from exists_of_orbit Pb1, have Ph1b1 : h1 ∈ moverset hom H a b1, from mem_sep_of_mem Ph1₁ Ph1₂, assume Psetb2 Pmeq, begin subst b1, rewrite Pmeq at Ph1b1, apply of_mem_sep Ph1b1 end variable [finsubgH : is_finsubg H] include finsubgH lemma subg_stab_of_move {h g : G} : h ∈ H → g ∈ moverset hom H a (hom h a) → h⁻¹*g ∈ stab hom H a := assume Ph Pg, have Phinvg : h⁻¹*g ∈ H, from begin apply finsubg_mul_closed H, apply finsubg_has_inv H, assumption, apply mem_of_mem_sep Pg end, mem_sep_of_mem Phinvg (reverse_move Pg) lemma subg_stab_closed : finset_mul_closed_on (stab hom H a) := take f g, assume Pfstab, have Pf : hom f a = a, from of_mem_sep Pfstab, assume Pgstab, have Pfg : hom (f*g) a = a, from calc hom (f*g) a = (hom f) a : stab_lmul Pgstab ... = a : Pf, have PfginH : (f*g) ∈ H, from finsubg_mul_closed H (mem_of_mem_sep Pfstab) (mem_of_mem_sep Pgstab), mem_sep_of_mem PfginH Pfg lemma subg_stab_has_one : 1 ∈ stab hom H a := have P : hom 1 a = a, from calc hom 1 a = perm.f (1 : perm S) a : {hom_map_one hom} ... = a : rfl, have PoneinH : 1 ∈ H, from finsubg_has_one H, mem_sep_of_mem PoneinH P lemma subg_stab_has_inv : finset_has_inv (stab hom H a) := take f, assume Pfstab, have Pf : hom f a = a, from of_mem_sep Pfstab, have Pfinv : hom f⁻¹ a = a, from calc hom f⁻¹ a = hom f⁻¹ ((hom f) a) : by rewrite Pf ... = perm.f ((hom f⁻¹) * (hom f)) a : by rewrite perm_f_mul ... = hom (f⁻¹ * f) a : by rewrite (is_hom hom) ... = hom 1 a : by rewrite mul.left_inv ... = perm.f (1 : perm S) a : by rewrite (hom_map_one hom), have PfinvinH : f⁻¹ ∈ H, from finsubg_has_inv H (mem_of_mem_sep Pfstab), mem_sep_of_mem PfinvinH Pfinv definition subg_stab_is_finsubg [instance] : is_finsubg (stab hom H a) := is_finsubg.mk subg_stab_has_one subg_stab_closed subg_stab_has_inv lemma subg_lcoset_eq_moverset {h : G} : h ∈ H → fin_lcoset (stab hom H a) h = moverset hom H a (hom h a) := assume Ph, ext (take g, iff.intro (assume Pl, obtain f (Pf₁ : f ∈ stab hom H a) (Pf₂ : h*f = g), from exists_of_mem_image Pl, have Pfstab : hom f a = a, from of_mem_sep Pf₁, have PginH : g ∈ H, begin subst Pf₂, apply finsubg_mul_closed H, assumption, apply mem_of_mem_sep Pf₁ end, have Pga : hom g a = hom h a, from calc hom g a = hom (h*f) a : by subst g ... = hom h a : stab_lmul Pf₁, mem_sep_of_mem PginH Pga) (assume Pr, begin rewrite [↑fin_lcoset, mem_image_iff], existsi h⁻¹*g, split, exact subg_stab_of_move Ph Pr, apply mul_inv_cancel_left end)) lemma subg_moverset_of_orbit_is_lcoset_of_stab (b : S) : b ∈ orbit hom H a → ∃ h, h ∈ H ∧ fin_lcoset (stab hom H a) h = moverset hom H a b := assume Porb, obtain p (Pp₁ : p ∈ image hom H) (Pp₂ : move_by a p = b), from exists_of_mem_image Porb, obtain h (Ph₁ : h ∈ H) (Ph₂ : hom h = p), from exists_of_mem_image Pp₁, have Phab : hom h a = b, from by subst p; assumption, exists.intro h (and.intro Ph₁ (Phab ▸ subg_lcoset_eq_moverset Ph₁)) lemma subg_lcoset_of_stab_is_moverset_of_orbit (h : G) : h ∈ H → ∃ b, b ∈ orbit hom H a ∧ moverset hom H a b = fin_lcoset (stab hom H a) h := assume Ph, have Pha : (hom h a) ∈ orbit hom H a, by apply mem_image_of_mem; apply mem_image_of_mem; exact Ph, exists.intro (hom h a) (and.intro Pha (eq.symm (subg_lcoset_eq_moverset Ph))) lemma subg_moversets_of_orbit_eq_stab_lcosets : image (moverset hom H a) (orbit hom H a) = fin_lcosets (stab hom H a) H := ext (take s, iff.intro (assume Pl, obtain b Pb₁ Pb₂, from exists_of_mem_image Pl, obtain h Ph, from subg_moverset_of_orbit_is_lcoset_of_stab b Pb₁, begin rewrite [↑fin_lcosets, mem_image_eq], existsi h, subst Pb₂, assumption end) (assume Pr, obtain h Ph₁ Ph₂, from exists_of_mem_image Pr, obtain b Pb, from @subg_lcoset_of_stab_is_moverset_of_orbit G S _ _ _ _ hom H a Hom _ h Ph₁, begin rewrite [mem_image_eq], existsi b, subst Ph₂, assumption end)) open nat theorem orbit_stabilizer_theorem : card H = card (orbit hom H a) * card (stab hom H a) := calc card H = card (fin_lcosets (stab hom H a) H) * card (stab hom H a) : lagrange_theorem stab_subset ... = card (image (moverset hom H a) (orbit hom H a)) * card (stab hom H a) : subg_moversets_of_orbit_eq_stab_lcosets ... = card (orbit hom H a) * card (stab hom H a) : card_image_eq_of_inj_on moverset_inj_on_orbit end orbit_stabilizer section orbit_partition variables {G S : Type} [group G] [decidable_eq G] [fintype S] [decidable_eq S] variables {hom : G → perm S} [Hom : is_hom_class hom] {H : finset G} [subgH : is_finsubg H] include Hom subgH lemma in_orbit_refl {a : S} : a ∈ orbit hom H a := mem_image (mem_image (finsubg_has_one H) (hom_map_one hom)) rfl lemma in_orbit_trans {a b c : S} : a ∈ orbit hom H b → b ∈ orbit hom H c → a ∈ orbit hom H c := assume Painb Pbinc, obtain h PhinH Phba, from exists_of_orbit Painb, obtain g PginH Pgcb, from exists_of_orbit Pbinc, orbit_of_exists (exists.intro (h*g) (and.intro (finsubg_mul_closed H PhinH PginH) (calc hom (h*g) c = perm.f ((hom h) * (hom g)) c : is_hom hom ... = ((hom h) ∘ (hom g)) c : by rewrite perm_f_mul ... = (hom h) b : Pgcb ... = a : Phba))) lemma in_orbit_symm {a b : S} : a ∈ orbit hom H b → b ∈ orbit hom H a := assume Painb, obtain h PhinH Phba, from exists_of_orbit Painb, have perm.f (hom h)⁻¹ a = b, by rewrite [-Phba, -perm_f_mul, mul.left_inv], have (hom h⁻¹) a = b, by rewrite [hom_map_inv, this], orbit_of_exists (exists.intro h⁻¹ (and.intro (finsubg_has_inv H PhinH) this)) lemma orbit_is_partition : is_partition (orbit hom H) := take a b, propext (iff.intro (assume Painb, obtain h PhinH Phba, from exists_of_orbit Painb, ext take c, iff.intro (assume Pcina, in_orbit_trans Pcina Painb) (assume Pcinb, obtain g PginH Pgbc, from exists_of_orbit Pcinb, in_orbit_trans Pcinb (in_orbit_symm Painb))) (assume Peq, Peq ▸ in_orbit_refl)) variables (hom) (H) open nat finset.partition fintype definition orbit_partition : @partition S _ := mk univ (orbit hom H) orbit_is_partition (restriction_imp_union (orbit hom H) orbit_is_partition (λ a Pa, !subset_univ)) definition orbits : finset (finset S) := equiv_classes (orbit_partition hom H) definition fixed_point_orbits : finset (finset S) := {cls ∈ orbits hom H | card cls = 1} variables {hom} {H} lemma exists_iff_mem_orbits (orb : finset S) : orb ∈ orbits hom H ↔ ∃ a : S, orbit hom H a = orb := begin esimp [orbits, equiv_classes, orbit_partition], rewrite [mem_image_iff], apply iff.intro, intro Pl, cases Pl with a Pa, rewrite (and_left_true !mem_univ) at Pa, existsi a, exact Pa, intro Pr, cases Pr with a Pa, rewrite -true_and at Pa, rewrite -(iff_true_intro (mem_univ a)) at Pa, existsi a, exact Pa end lemma exists_of_mem_orbits {orb : finset S} : orb ∈ orbits hom H → ∃ a : S, orbit hom H a = orb := iff.elim_left (exists_iff_mem_orbits orb) lemma fixed_point_orbits_eq : fixed_point_orbits hom H = image (orbit hom H) (fixed_points hom H) := ext take s, iff.intro (assume Pin, obtain Psin Ps, from iff.elim_left !mem_sep_iff Pin, obtain a Pa, from exists_of_mem_orbits Psin, mem_image (mem_sep_of_mem !mem_univ (eq.symm (eq_of_card_eq_of_subset (by rewrite [Pa, Ps]) (subset_of_forall take x, assume Pxin, eq_of_mem_singleton Pxin ▸ in_orbit_refl)))) Pa) (assume Pin, obtain a Pain Porba, from exists_of_mem_image Pin, mem_sep_of_mem (begin esimp [orbits, equiv_classes, orbit_partition], rewrite [mem_image_iff], existsi a, exact and.intro !mem_univ Porba end) (begin substvars, rewrite [of_mem_sep Pain] end)) lemma orbit_inj_on_fixed_points : set.inj_on (orbit hom H) (ts (fixed_points hom H)) := take a₁ a₂, begin rewrite [-*mem_eq_mem_to_set, ↑fixed_points, *mem_sep_iff], intro Pa₁ Pa₂, rewrite [and.right Pa₁, and.right Pa₂], exact eq_of_singleton_eq end lemma card_fixed_point_orbits_eq : card (fixed_point_orbits hom H) = card (fixed_points hom H) := by rewrite fixed_point_orbits_eq; apply card_image_eq_of_inj_on orbit_inj_on_fixed_points lemma orbit_class_equation : card S = Sum (orbits hom H) card := class_equation (orbit_partition hom H) lemma card_fixed_point_orbits : Sum (fixed_point_orbits hom H) card = card (fixed_point_orbits hom H) := calc Sum _ _ = Sum (fixed_point_orbits hom H) (λ x, 1) : Sum_ext (take c Pin, of_mem_sep Pin) ... = card (fixed_point_orbits hom H) * 1 : Sum_const_eq_card_mul ... = card (fixed_point_orbits hom H) : mul_one (card (fixed_point_orbits hom H)) local attribute nat.comm_semiring [instance] lemma orbit_class_equation' : card S = card (fixed_points hom H) + Sum {cls ∈ orbits hom H | card cls ≠ 1} card := calc card S = Sum (orbits hom H) finset.card : orbit_class_equation ... = Sum (fixed_point_orbits hom H) finset.card + Sum {cls ∈ orbits hom H | card cls ≠ 1} card : Sum_binary_union ... = card (fixed_point_orbits hom H) + Sum {cls ∈ orbits hom H | card cls ≠ 1} card : by rewrite -card_fixed_point_orbits ... = card (fixed_points hom H) + Sum {cls ∈ orbits hom H | card cls ≠ 1} card : by rewrite card_fixed_point_orbits_eq end orbit_partition section cayley variables {G : Type} [group G] [fintype G] definition action_by_lmul : G → perm G := take g, perm.mk (lmul_by g) (lmul_inj g) variable [decidable_eq G] lemma action_by_lmul_hom : homomorphic (@action_by_lmul G _ _) := take g₁ (g₂ : G), eq.symm (calc action_by_lmul g₁ * action_by_lmul g₂ = perm.mk ((lmul_by g₁)∘(lmul_by g₂)) _ : rfl ... = perm.mk (lmul_by (g₁*g₂)) _ : by congruence; apply coset.lmul_compose) lemma action_by_lmul_inj : injective (@action_by_lmul G _ _) := take g₁ g₂, assume Peq, perm.no_confusion Peq (λ Pfeq Pqeq, have Pappeq : g₁*1 = g₂*1, from congr_fun Pfeq _, calc g₁ = g₁ * 1 : mul_one ... = g₂ * 1 : Pappeq ... = g₂ : mul_one) definition action_by_lmul_is_iso [instance] : is_iso_class (@action_by_lmul G _ _) := is_iso_class.mk action_by_lmul_hom action_by_lmul_inj end cayley section lcosets open fintype subtype variables {G : Type} [group G] [fintype G] [decidable_eq G] variables H : finset G definition action_on_lcoset : G → perm (lcoset_type univ H) := take g, perm.mk (lcoset_lmul (mem_univ g)) lcoset_lmul_inj private definition lcoset_of (g : G) : lcoset_type univ H := tag (fin_lcoset H g) (exists.intro g (and.intro !mem_univ rfl)) variable {H} lemma action_on_lcoset_eq (g : G) (J : lcoset_type univ H) : elt_of (action_on_lcoset H g J) = fin_lcoset (elt_of J) g := rfl lemma action_on_lcoset_hom : homomorphic (action_on_lcoset H) := take g₁ g₂, eq_of_feq (funext take S, subtype.eq (by rewrite [↑action_on_lcoset, ↑lcoset_lmul, -fin_lcoset_compose])) definition action_on_lcoset_is_hom [instance] : is_hom_class (action_on_lcoset H) := is_hom_class.mk action_on_lcoset_hom variable [finsubgH : is_finsubg H] include finsubgH lemma aol_fixed_point_subset_normalizer (J : lcoset_type univ H) : is_fixed_point (action_on_lcoset H) H J → elt_of J ⊆ normalizer H := obtain j Pjin Pj, from exists_of_lcoset_type J, assume Pfp, have PH : ∀ {h}, h ∈ H → fin_lcoset (fin_lcoset H j) h = fin_lcoset H j, from take h, assume Ph, by rewrite [Pj, -action_on_lcoset_eq, Pfp h Ph], subset_of_forall take g, begin rewrite [-Pj, fin_lcoset_same, -inv_inv at {2}], intro Pg, rewrite -Pg at PH, apply finsubg_has_inv, apply mem_sep_of_mem !mem_univ, intro h Ph, have Phg : fin_lcoset (fin_lcoset H g) h = fin_lcoset H g, from PH Ph, revert Phg, rewrite [↑conj_by, inv_inv, mul.assoc, fin_lcoset_compose, -fin_lcoset_same, ↑fin_lcoset, mem_image_iff, ↑lmul_by], intro Pex, cases Pex with k Pand, cases Pand with Pkin Pk, rewrite [-Pk, inv_mul_cancel_left], exact Pkin end lemma aol_fixed_point_of_mem_normalizer {g : G} : g ∈ normalizer H → is_fixed_point (action_on_lcoset H) H (lcoset_of H g) := assume Pgin, take h, assume Phin, subtype.eq (by rewrite [action_on_lcoset_eq, ↑lcoset_of, lrcoset_same_of_mem_normalizer Pgin, fin_lrcoset_comm, finsubg_lcoset_id Phin]) lemma aol_fixed_points_eq_normalizer : Union (fixed_points (action_on_lcoset H) H) elt_of = normalizer H := ext take g, begin rewrite [mem_Union_iff], apply iff.intro, intro Pl, cases Pl with L PL, revert PL, rewrite [is_fixed_point_iff_mem_fixed_points], intro Pg, apply mem_of_subset_of_mem, apply aol_fixed_point_subset_normalizer L, exact and.left Pg, exact and.right Pg, intro Pr, existsi (lcoset_of H g), apply and.intro, rewrite [is_fixed_point_iff_mem_fixed_points], exact aol_fixed_point_of_mem_normalizer Pr, exact fin_mem_lcoset g end open nat lemma card_aol_fixed_points_eq_card_cosets : card (fixed_points (action_on_lcoset H) H) = card (lcoset_type (normalizer H) H) := have Peq : card (fixed_points (action_on_lcoset H) H) * card H = card (lcoset_type (normalizer H) H) * card H, from calc card _ * card H = card (Union (fixed_points (action_on_lcoset H) H) elt_of) : card_Union_lcosets ... = card (normalizer H) : aol_fixed_points_eq_normalizer ... = card (lcoset_type (normalizer H) H) * card H : lagrange_theorem' subset_normalizer, eq_of_mul_eq_mul_right (card_pos_of_mem !finsubg_has_one) Peq end lcosets section perm_fin open fin nat eq.ops variable {n : nat} definition lift_perm (p : perm (fin n)) : perm (fin (succ n)) := perm.mk (lift_fun p) (lift_fun_of_inj (perm.inj p)) definition lower_perm (p : perm (fin (succ n))) (P : p maxi = maxi) : perm (fin n) := perm.mk (lower_inj p (perm.inj p) P) (take i j, begin rewrite [-eq_iff_veq, *lower_inj_apply, eq_iff_veq], apply injective_comp (perm.inj p) lift_succ_inj end) lemma lift_lower_eq : ∀ {p : perm (fin (succ n))} (P : p maxi = maxi), lift_perm (lower_perm p P) = p | (perm.mk pf Pinj) := assume Pmax, begin rewrite [↑lift_perm], congruence, apply funext, intro i, have Pfmax : pf maxi = maxi, by apply Pmax, have Pd : decidable (i = maxi), from _, cases Pd with Pe Pne, rewrite [Pe, Pfmax], apply lift_fun_max, rewrite [lift_fun_of_ne_max Pne, ↑lower_perm, ↑lift_succ], rewrite [-eq_iff_veq, -val_lift, lower_inj_apply, eq_iff_veq], congruence, rewrite [-eq_iff_veq] end lemma lift_perm_inj : injective (@lift_perm n) := take p1 p2, assume Peq, eq_of_feq (lift_fun_inj (feq_of_eq Peq)) lemma lift_perm_inj_on_univ : set.inj_on (@lift_perm n) (ts univ) := eq.symm to_set_univ ▸ iff.elim_left set.injective_iff_inj_on_univ lift_perm_inj lemma lift_to_stab : image (@lift_perm n) univ = stab id univ maxi := ext (take (pp : perm (fin (succ n))), iff.intro (assume Pimg, obtain p P_ Pp, from exists_of_mem_image Pimg, have Ppp : pp maxi = maxi, from calc pp maxi = lift_perm p maxi : {eq.symm Pp} ... = lift_fun p maxi : rfl ... = maxi : lift_fun_max, mem_sep_of_mem !mem_univ Ppp) (assume Pstab, have Ppp : pp maxi = maxi, from of_mem_sep Pstab, mem_image !mem_univ (lift_lower_eq Ppp))) definition move_from_max_to (i : fin (succ n)) : perm (fin (succ n)) := perm.mk (madd (i - maxi)) madd_inj lemma orbit_max : orbit (@id (perm (fin (succ n)))) univ maxi = univ := ext (take i, iff.intro (assume P, !mem_univ) (assume P, begin apply mem_image, apply mem_image, apply mem_univ (move_from_max_to i), apply rfl, apply sub_add_cancel end)) lemma card_orbit_max : card (orbit (@id (perm (fin (succ n)))) univ maxi) = succ n := calc card (orbit (@id (perm (fin (succ n)))) univ maxi) = card univ : by rewrite orbit_max ... = succ n : card_fin (succ n) open fintype lemma card_lift_to_stab : card (stab (@id (perm (fin (succ n)))) univ maxi) = card (perm (fin n)) := calc finset.card (stab (@id (perm (fin (succ n)))) univ maxi) = finset.card (image (@lift_perm n) univ) : by rewrite lift_to_stab ... = card univ : by rewrite (card_image_eq_of_inj_on lift_perm_inj_on_univ) lemma card_perm_step : card (perm (fin (succ n))) = (succ n) * card (perm (fin n)) := calc card (perm (fin (succ n))) = card (orbit id univ maxi) * card (stab id univ maxi) : orbit_stabilizer_theorem ... = (succ n) * card (stab id univ maxi) : {card_orbit_max} ... = (succ n) * card (perm (fin n)) : by rewrite -card_lift_to_stab end perm_fin end group_theory