import data.examples.vector open nat vector variables {A B : Type} variable {n : nat} theorem tst1 : ∀ n m, succ n + succ m = succ (succ (n + m)) := begin intro n m, rewrite [succ_add] end definition add2 (x y : nat) : nat := nat.rec_on x (λ y, y) (λ x r y, succ (r y)) y local infix + := add2 theorem tst2 : ∀ n m, succ n + succ m = succ (succ (n + m)) := begin intro n m, esimp [add2], state, apply sorry end definition fib (A : Type) : nat → nat → nat → nat | b 0 c := b | b 1 c := c | b (succ (succ a)) c := fib b a c + fib b (succ a) c theorem fibgt0 : ∀ b n c, fib nat b n c > 0 | b 0 c := sorry | b 1 c := sorry | b (succ (succ m)) c := begin unfold fib, state, apply sorry end theorem unzip_zip : ∀ {n : nat} (v₁ : vector A n) (v₂ : vector B n), unzip (zip v₁ v₂) = (v₁, v₂) | 0 [] [] := rfl | (succ m) (a::va) (b::vb) := begin unfold [zip, unzip], state, rewrite [unzip_zip] end