import logic namespace setoid inductive setoid : Type := mk_setoid: Π (A : Type), (A → A → Prop) → setoid definition carrier (s : setoid) := setoid.rec (λ a eq, a) s definition eqv {s : setoid} : carrier s → carrier s → Prop := setoid.rec (λ a eqv, eqv) s infix `≈`:50 := eqv coercion carrier inductive morphism (s1 s2 : setoid) : Type := mk_morphism : Π (f : s1 → s2), (∀ x y, x ≈ y → f x ≈ f y) → morphism s1 s2 set_option pp.universes true check mk_morphism check λ (s1 s2 : setoid), s1 check λ (s1 s2 : Type), s1 inductive morphism2 (s1 : setoid) (s2 : setoid) : Type := mk_morphism2 : Π (f : s1 → s2), (∀ x y, x ≈ y → f x ≈ f y) → morphism2 s1 s2 check mk_morphism2 end setoid