/- Copyright (c) 2015 Haitao Zhang. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Haitao Zhang, Leonardo de Moura Finite ordinal types. -/ import data.list.basic data.finset.basic data.fintype.card open eq.ops nat function list finset fintype structure fin (n : nat) := (val : nat) (is_lt : val < n) attribute fin.val [coercion] definition less_than [reducible] := fin namespace fin section def_equal variable {n : nat} lemma eq_of_veq : ∀ {i j : fin n}, (val i) = j → i = j | (mk iv ilt) (mk jv jlt) := assume (veq : iv = jv), begin congruence, assumption end lemma veq_of_eq : ∀ {i j : fin n}, i = j → (val i) = j | (mk iv ilt) (mk jv jlt) := assume Peq, have veq : iv = jv, from fin.no_confusion Peq (λ Pe Pqe, Pe), veq lemma eq_iff_veq : ∀ {i j : fin n}, (val i) = j ↔ i = j := take i j, iff.intro eq_of_veq veq_of_eq definition val_inj := @eq_of_veq n end def_equal section open decidable protected definition has_decidable_eq [instance] (n : nat) : ∀ (i j : fin n), decidable (i = j) | (mk ival ilt) (mk jval jlt) := match nat.has_decidable_eq ival jval with | inl veq := inl (by substvars) | inr vne := inr (by intro h; injection h; contradiction) end end lemma dinj_lt (n : nat) : dinj (λ i, i < n) fin.mk := take a1 a2 Pa1 Pa2 Pmkeq, fin.no_confusion Pmkeq (λ Pe Pqe, Pe) lemma val_mk (n i : nat) (Plt : i < n) : fin.val (fin.mk i Plt) = i := rfl definition upto [reducible] (n : nat) : list (fin n) := dmap (λ i, i < n) fin.mk (list.upto n) lemma nodup_upto (n : nat) : nodup (upto n) := dmap_nodup_of_dinj (dinj_lt n) (list.nodup_upto n) lemma mem_upto (n : nat) : ∀ (i : fin n), i ∈ upto n := take i, fin.destruct i (take ival Piltn, assert Pin : ival ∈ list.upto n, from mem_upto_of_lt Piltn, mem_dmap Piltn Pin) lemma upto_zero : upto 0 = [] := by rewrite [↑upto, list.upto_nil, dmap_nil] lemma map_val_upto (n : nat) : map fin.val (upto n) = list.upto n := map_dmap_of_inv_of_pos (val_mk n) (@lt_of_mem_upto n) lemma length_upto (n : nat) : length (upto n) = n := calc length (upto n) = length (list.upto n) : (map_val_upto n ▸ length_map fin.val (upto n))⁻¹ ... = n : list.length_upto n definition is_fintype [instance] (n : nat) : fintype (fin n) := fintype.mk (upto n) (nodup_upto n) (mem_upto n) section pigeonhole open fintype lemma card_fin (n : nat) : card (fin n) = n := length_upto n theorem pigeonhole {n m : nat} (Pmltn : m < n) : ¬∃ f : fin n → fin m, injective f := assume Pex, absurd Pmltn (not_lt_of_ge (calc n = card (fin n) : card_fin ... ≤ card (fin m) : card_le_of_inj (fin n) (fin m) Pex ... = m : card_fin)) end pigeonhole definition zero (n : nat) : fin (succ n) := mk 0 !zero_lt_succ variable {n : nat} theorem val_lt : ∀ i : fin n, val i < n | (mk v h) := h definition lift : fin n → Π m, fin (n + m) | (mk v h) m := mk v (lt_add_of_lt_right h m) definition lift_succ (i : fin n) : fin (nat.succ n) := lift i 1 definition maxi [reducible] : fin (succ n) := mk n !lt_succ_self definition sub_max : fin (succ n) → fin (succ n) | (mk iv ilt) := mk (succ iv mod (succ n)) (mod_lt _ !zero_lt_succ) theorem val_lift : ∀ (i : fin n) (m : nat), val i = val (lift i m) | (mk v h) m := rfl section lift_lower lemma ne_max_of_lt_max {i : fin (succ n)} : i < n → i ≠ maxi := by intro hlt he; substvars; exact absurd hlt (lt.irrefl n) lemma lt_max_of_ne_max {i : fin (succ n)} : i ≠ maxi → i < n := assume hne : i ≠ maxi, assert visn : val i < nat.succ n, from val_lt i, assert aux : val (@maxi n) = n, from rfl, assert vne : val i ≠ n, from assume he, have vivm : val i = val (@maxi n), from he ⬝ aux⁻¹, absurd (eq_of_veq vivm) hne, lt_of_le_of_ne (le_of_lt_succ visn) vne lemma lift_succ_ne_max {i : fin n} : lift_succ i ≠ maxi := begin cases i with v hlt, esimp [lift_succ, lift, max], intro he, injection he, substvars, exact absurd hlt (lt.irrefl v) end lemma lift_succ_inj : injective (@lift_succ n) := take i j, destruct i (destruct j (take iv ilt jv jlt Pmkeq, begin congruence, apply fin.no_confusion Pmkeq, intros, assumption end)) lemma lt_of_inj_of_max (f : fin (succ n) → fin (succ n)) : injective f → (f maxi = maxi) → ∀ i, i < n → f i < n := assume Pinj Peq, take i, assume Pilt, assert P1 : f i = f maxi → i = maxi, from assume Peq, Pinj i maxi Peq, have P : f i ≠ maxi, from begin rewrite -Peq, intro P2, apply absurd (P1 P2) (ne_max_of_lt_max Pilt) end, lt_max_of_ne_max P definition lift_fun : (fin n → fin n) → (fin (succ n) → fin (succ n)) := λ f i, dite (i = maxi) (λ Pe, maxi) (λ Pne, lift_succ (f (mk i (lt_max_of_ne_max Pne)))) definition lower_inj (f : fin (succ n) → fin (succ n)) (inj : injective f) : f maxi = maxi → fin n → fin n := assume Peq, take i, mk (f (lift_succ i)) (lt_of_inj_of_max f inj Peq (lift_succ i) (lt_max_of_ne_max lift_succ_ne_max)) lemma lift_fun_max {f : fin n → fin n} : lift_fun f maxi = maxi := begin rewrite [↑lift_fun, dif_pos rfl] end lemma lift_fun_of_ne_max {f : fin n → fin n} {i} (Pne : i ≠ maxi) : lift_fun f i = lift_succ (f (mk i (lt_max_of_ne_max Pne))) := begin rewrite [↑lift_fun, dif_neg Pne] end lemma lift_fun_eq {f : fin n → fin n} {i : fin n} : lift_fun f (lift_succ i) = lift_succ (f i) := begin rewrite [lift_fun_of_ne_max lift_succ_ne_max], congruence, congruence, rewrite [-eq_iff_veq, val_mk, ↑lift_succ, -val_lift] end lemma lift_fun_of_inj {f : fin n → fin n} : injective f → injective (lift_fun f) := assume Pinj, take i j, assert Pdi : decidable (i = maxi), from _, assert Pdj : decidable (j = maxi), from _, begin cases Pdi with Pimax Pinmax, cases Pdj with Pjmax Pjnmax, substvars, intros, exact rfl, substvars, rewrite [lift_fun_max, lift_fun_of_ne_max Pjnmax], intro Plmax, apply absurd Plmax⁻¹ lift_succ_ne_max, cases Pdj with Pjmax Pjnmax, substvars, rewrite [lift_fun_max, lift_fun_of_ne_max Pinmax], intro Plmax, apply absurd Plmax lift_succ_ne_max, rewrite [lift_fun_of_ne_max Pinmax, lift_fun_of_ne_max Pjnmax], intro Peq, rewrite [-eq_iff_veq], exact veq_of_eq (Pinj (lift_succ_inj Peq)) end lemma lift_fun_inj : injective (@lift_fun n) := take f₁ f₂ Peq, funext (λ i, assert Peqi : lift_fun f₁ (lift_succ i) = lift_fun f₂ (lift_succ i), from congr_fun Peq _, begin revert Peqi, rewrite [*lift_fun_eq], apply lift_succ_inj end) end lift_lower section madd definition madd (i j : fin (succ n)) : fin (succ n) := mk ((i + j) mod (succ n)) (mod_lt _ !zero_lt_succ) lemma val_madd : ∀ i j : fin (succ n), val (madd i j) = (i + j) mod (succ n) | (mk iv ilt) (mk jv jlt) := by rewrite [val_mk] end madd definition pred : fin n → fin n | (mk v h) := mk (nat.pred v) (pre_lt_of_lt h) lemma val_pred : ∀ (i : fin n), val (pred i) = nat.pred (val i) | (mk v h) := rfl lemma pred_zero : pred (zero n) = zero n := rfl definition mk_pred (i : nat) (h : succ i < succ n) : fin n := mk i (lt_of_succ_lt_succ h) definition succ : fin n → fin (succ n) | (mk v h) := mk (nat.succ v) (succ_lt_succ h) lemma val_succ : ∀ (i : fin n), val (succ i) = nat.succ (val i) | (mk v h) := rfl definition elim0 {C : Type} : fin 0 → C | (mk v h) := absurd h !not_lt_zero end fin