/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura -/ prelude import init.datatypes init.reserved_notation definition not (a : Type) := a → empty prefix `¬` := not definition absurd {a : Type} {b : Type} (H₁ : a) (H₂ : ¬a) : b := empty.rec (λ e, b) (H₂ H₁) theorem mt {a b : Type} (H₁ : a → b) (H₂ : ¬b) : ¬a := assume Ha : a, absurd (H₁ Ha) H₂ -- not -- --- theorem not_empty : ¬ empty := assume H : empty, H theorem not_not_intro {a : Type} (Ha : a) : ¬¬a := assume Hna : ¬a, absurd Ha Hna theorem not_intro {a : Type} (H : a → empty) : ¬a := H theorem not_elim {a : Type} (H₁ : ¬a) (H₂ : a) : empty := H₁ H₂ theorem not_implies_left {a b : Type} (H : ¬(a → b)) : ¬¬a := assume Hna : ¬a, absurd (assume Ha : a, absurd Ha Hna) H theorem not_implies_right {a b : Type} (H : ¬(a → b)) : ¬b := assume Hb : b, absurd (assume Ha : a, Hb) H -- eq -- -- notation a = b := eq a b definition rfl {A : Type} {a : A} := eq.refl a namespace eq variables {A : Type} variables {a b c a': A} theorem subst {P : A → Type} (H₁ : a = b) (H₂ : P a) : P b := rec H₂ H₁ theorem trans (H₁ : a = b) (H₂ : b = c) : a = c := subst H₂ H₁ definition symm (H : a = b) : b = a := subst H (refl a) namespace ops notation H `⁻¹` := symm H --input with \sy or \-1 or \inv notation H1 ⬝ H2 := trans H1 H2 notation H1 ▸ H2 := subst H1 H2 end ops end eq calc_subst eq.subst calc_refl eq.refl calc_trans eq.trans calc_symm eq.symm -- ne -- -- definition ne {A : Type} (a b : A) := ¬(a = b) notation a ≠ b := ne a b namespace ne open eq.ops variable {A : Type} variables {a b : A} theorem intro : (a = b → empty) → a ≠ b := assume H, H theorem elim : a ≠ b → a = b → empty := assume H₁ H₂, H₁ H₂ theorem irrefl : a ≠ a → empty := assume H, H rfl theorem symm : a ≠ b → b ≠ a := assume (H : a ≠ b) (H₁ : b = a), H (H₁⁻¹) end ne section open eq.ops variables {A : Type} {a b c : A} theorem false.of_ne : a ≠ a → empty := assume H, H rfl theorem ne.of_eq_of_ne : a = b → b ≠ c → a ≠ c := assume H₁ H₂, H₁⁻¹ ▸ H₂ theorem ne.of_ne_of_eq : a ≠ b → b = c → a ≠ c := assume H₁ H₂, H₂ ▸ H₁ end calc_trans ne.of_eq_of_ne calc_trans ne.of_ne_of_eq -- iff -- --- definition iff (a b : Type) := prod (a → b) (b → a) notation a <-> b := iff a b notation a ↔ b := iff a b namespace iff variables {a b c : Type} definition def : (a ↔ b) = (prod (a → b) (b → a)) := rfl definition intro (H₁ : a → b) (H₂ : b → a) : a ↔ b := prod.mk H₁ H₂ definition elim (H₁ : (a → b) → (b → a) → c) (H₂ : a ↔ b) : c := prod.rec H₁ H₂ definition elim_left (H : a ↔ b) : a → b := elim (assume H₁ H₂, H₁) H definition mp := @elim_left definition elim_right (H : a ↔ b) : b → a := elim (assume H₁ H₂, H₂) H definition flip_sign (H₁ : a ↔ b) : ¬a ↔ ¬b := intro (assume Hna, mt (elim_right H₁) Hna) (assume Hnb, mt (elim_left H₁) Hnb) definition refl (a : Type) : a ↔ a := intro (assume H, H) (assume H, H) definition rfl {a : Type} : a ↔ a := refl a theorem trans (H₁ : a ↔ b) (H₂ : b ↔ c) : a ↔ c := intro (assume Ha, elim_left H₂ (elim_left H₁ Ha)) (assume Hc, elim_right H₁ (elim_right H₂ Hc)) theorem symm (H : a ↔ b) : b ↔ a := intro (assume Hb, elim_right H Hb) (assume Ha, elim_left H Ha) theorem true_elim (H : a ↔ unit) : a := mp (symm H) unit.star theorem false_elim (H : a ↔ empty) : ¬a := assume Ha : a, mp H Ha open eq.ops theorem of_eq {a b : Type} (H : a = b) : a ↔ b := iff.intro (λ Ha, H ▸ Ha) (λ Hb, H⁻¹ ▸ Hb) end iff calc_refl iff.refl calc_trans iff.trans -- inhabited -- --------- inductive inhabited [class] (A : Type) : Type := mk : A → inhabited A namespace inhabited protected definition destruct {A : Type} {B : Type} (H1 : inhabited A) (H2 : A → B) : B := inhabited.rec H2 H1 definition fun_inhabited [instance] (A : Type) {B : Type} (H : inhabited B) : inhabited (A → B) := destruct H (λb, mk (λa, b)) definition dfun_inhabited [instance] (A : Type) {B : A → Type} (H : Πx, inhabited (B x)) : inhabited (Πx, B x) := mk (λa, destruct (H a) (λb, b)) definition default (A : Type) [H : inhabited A] : A := destruct H (take a, a) end inhabited -- decidable -- --------- inductive decidable [class] (p : Type) : Type := inl : p → decidable p, inr : ¬p → decidable p namespace decidable variables {p q : Type} definition pos_witness [C : decidable p] (H : p) : p := rec_on C (λ Hp, Hp) (λ Hnp, absurd H Hnp) definition neg_witness [C : decidable p] (H : ¬ p) : ¬ p := rec_on C (λ Hp, absurd Hp H) (λ Hnp, Hnp) definition by_cases {q : Type} [C : decidable p] (Hpq : p → q) (Hnpq : ¬p → q) : q := rec_on C (assume Hp, Hpq Hp) (assume Hnp, Hnpq Hnp) theorem em (p : Type) [H : decidable p] : sum p ¬p := by_cases (λ Hp, sum.inl Hp) (λ Hnp, sum.inr Hnp) theorem by_contradiction [Hp : decidable p] (H : ¬p → empty) : p := by_cases (assume H₁ : p, H₁) (assume H₁ : ¬p, empty.rec (λ e, p) (H H₁)) definition decidable_iff_equiv (Hp : decidable p) (H : p ↔ q) : decidable q := rec_on Hp (assume Hp : p, inl (iff.elim_left H Hp)) (assume Hnp : ¬p, inr (iff.elim_left (iff.flip_sign H) Hnp)) definition decidable_eq_equiv.{l} {p q : Type.{l}} (Hp : decidable p) (H : p = q) : decidable q := decidable_iff_equiv Hp (iff.of_eq H) end decidable section variables {p q : Type} open decidable (rec_on inl inr) definition unit.decidable [instance] : decidable unit := inl unit.star definition empty.decidable [instance] : decidable empty := inr not_empty definition prod.decidable [instance] (Hp : decidable p) (Hq : decidable q) : decidable (prod p q) := rec_on Hp (assume Hp : p, rec_on Hq (assume Hq : q, inl (prod.mk Hp Hq)) (assume Hnq : ¬q, inr (λ H : prod p q, prod.rec_on H (λ Hp Hq, absurd Hq Hnq)))) (assume Hnp : ¬p, inr (λ H : prod p q, prod.rec_on H (λ Hp Hq, absurd Hp Hnp))) definition sum.decidable [instance] (Hp : decidable p) (Hq : decidable q) : decidable (sum p q) := rec_on Hp (assume Hp : p, inl (sum.inl Hp)) (assume Hnp : ¬p, rec_on Hq (assume Hq : q, inl (sum.inr Hq)) (assume Hnq : ¬q, inr (λ H : sum p q, sum.rec_on H (λ Hp, absurd Hp Hnp) (λ Hq, absurd Hq Hnq)))) definition not.decidable [instance] (Hp : decidable p) : decidable (¬p) := rec_on Hp (assume Hp, inr (not_not_intro Hp)) (assume Hnp, inl Hnp) definition implies.decidable [instance] (Hp : decidable p) (Hq : decidable q) : decidable (p → q) := rec_on Hp (assume Hp : p, rec_on Hq (assume Hq : q, inl (assume H, Hq)) (assume Hnq : ¬q, inr (assume H : p → q, absurd (H Hp) Hnq))) (assume Hnp : ¬p, inl (assume Hp, absurd Hp Hnp)) definition iff.decidable [instance] (Hp : decidable p) (Hq : decidable q) : decidable (p ↔ q) := _ end definition decidable_pred {A : Type} (R : A → Type) := Π (a : A), decidable (R a) definition decidable_rel {A : Type} (R : A → A → Type) := Π (a b : A), decidable (R a b) definition decidable_eq (A : Type) := decidable_rel (@eq A) definition ite (c : Type) [H : decidable c] {A : Type} (t e : A) : A := decidable.rec_on H (λ Hc, t) (λ Hnc, e) definition if_pos {c : Type} [H : decidable c] (Hc : c) {A : Type} {t e : A} : (if c then t else e) = t := decidable.rec (λ Hc : c, eq.refl (@ite c (decidable.inl Hc) A t e)) (λ Hnc : ¬c, absurd Hc Hnc) H definition if_neg {c : Type} [H : decidable c] (Hnc : ¬c) {A : Type} {t e : A} : (if c then t else e) = e := decidable.rec (λ Hc : c, absurd Hc Hnc) (λ Hnc : ¬c, eq.refl (@ite c (decidable.inr Hnc) A t e)) H definition if_t_t (c : Type) [H : decidable c] {A : Type} (t : A) : (if c then t else t) = t := decidable.rec (λ Hc : c, eq.refl (@ite c (decidable.inl Hc) A t t)) (λ Hnc : ¬c, eq.refl (@ite c (decidable.inr Hnc) A t t)) H definition if_unit {A : Type} (t e : A) : (if unit then t else e) = t := if_pos unit.star definition if_empty {A : Type} (t e : A) : (if empty then t else e) = e := if_neg not_empty theorem if_cond_congr {c₁ c₂ : Type} [H₁ : decidable c₁] [H₂ : decidable c₂] (Heq : c₁ ↔ c₂) {A : Type} (t e : A) : (if c₁ then t else e) = (if c₂ then t else e) := decidable.rec_on H₁ (λ Hc₁ : c₁, decidable.rec_on H₂ (λ Hc₂ : c₂, if_pos Hc₁ ⬝ (if_pos Hc₂)⁻¹) (λ Hnc₂ : ¬c₂, absurd (iff.elim_left Heq Hc₁) Hnc₂)) (λ Hnc₁ : ¬c₁, decidable.rec_on H₂ (λ Hc₂ : c₂, absurd (iff.elim_right Heq Hc₂) Hnc₁) (λ Hnc₂ : ¬c₂, if_neg Hnc₁ ⬝ (if_neg Hnc₂)⁻¹)) theorem if_congr_aux {c₁ c₂ : Type} [H₁ : decidable c₁] [H₂ : decidable c₂] {A : Type} {t₁ t₂ e₁ e₂ : A} (Hc : c₁ ↔ c₂) (Ht : t₁ = t₂) (He : e₁ = e₂) : (if c₁ then t₁ else e₁) = (if c₂ then t₂ else e₂) := Ht ▸ He ▸ (if_cond_congr Hc t₁ e₁) theorem if_congr {c₁ c₂ : Type} [H₁ : decidable c₁] {A : Type} {t₁ t₂ e₁ e₂ : A} (Hc : c₁ ↔ c₂) (Ht : t₁ = t₂) (He : e₁ = e₂) : (if c₁ then t₁ else e₁) = (@ite c₂ (decidable.decidable_iff_equiv H₁ Hc) A t₂ e₂) := have H2 [visible] : decidable c₂, from (decidable.decidable_iff_equiv H₁ Hc), if_congr_aux Hc Ht He -- We use "dependent" if-then-else to be able to communicate the if-then-else condition -- to the branches definition dite (c : Type) [H : decidable c] {A : Type} (t : c → A) (e : ¬ c → A) : A := decidable.rec_on H (λ Hc, t Hc) (λ Hnc, e Hnc) definition dif_pos {c : Type} [H : decidable c] (Hc : c) {A : Type} {t : c → A} {e : ¬ c → A} : (if H : c then t H else e H) = t (decidable.pos_witness Hc) := decidable.rec (λ Hc : c, eq.refl (@dite c (decidable.inl Hc) A t e)) (λ Hnc : ¬c, absurd Hc Hnc) H definition dif_neg {c : Type} [H : decidable c] (Hnc : ¬c) {A : Type} {t : c → A} {e : ¬ c → A} : (if H : c then t H else e H) = e (decidable.neg_witness Hnc) := decidable.rec (λ Hc : c, absurd Hc Hnc) (λ Hnc : ¬c, eq.refl (@dite c (decidable.inr Hnc) A t e)) H -- Remark: dite and ite are "definitionally equal" when we ignore the proofs. theorem dite_ite_eq (c : Type) [H : decidable c] {A : Type} (t : A) (e : A) : dite c (λh, t) (λh, e) = ite c t e := rfl