-- Copyright (c) 2014 Floris van Doorn. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Floris van Doorn import hott.axioms.funext hott.trunc hott.equiv open path truncation inductive precategory [class] (ob : Type) : Type := mk : Π (hom : ob → ob → Type) (homH : Π {a b : ob}, is_hset (hom a b)) (comp : Π⦃a b c : ob⦄, hom b c → hom a b → hom a c) (id : Π {a : ob}, hom a a), (Π ⦃a b c d : ob⦄ {h : hom c d} {g : hom b c} {f : hom a b}, comp h (comp g f) ≈ comp (comp h g) f) → (Π ⦃a b : ob⦄ {f : hom a b}, comp id f ≈ f) → (Π ⦃a b : ob⦄ {f : hom a b}, comp f id ≈ f) → precategory ob namespace precategory variables {ob : Type} [C : precategory ob] variables {a b c d : ob} include C definition hom [reducible] : ob → ob → Type := rec (λ hom homH compose id assoc idr idl, hom) C definition homH [instance] : Π {a b : ob}, is_hset (hom a b) := rec (λ hom homH compose id assoc idr idl, homH) C -- note: needs to be reducible to typecheck composition in opposite category definition compose [reducible] : Π {a b c : ob}, hom b c → hom a b → hom a c := rec (λ hom homH compose id assoc idr idl, compose) C definition id [reducible] : Π {a : ob}, hom a a := rec (λ hom homH compose id assoc idr idl, id) C definition ID [reducible] (a : ob) : hom a a := id infixr `∘` := compose infixl `⟶`:25 := hom -- input ⟶ using \--> (this is a different arrow than \-> (→)) variables {h : hom c d} {g : hom b c} {f : hom a b} {i : hom a a} theorem assoc : Π ⦃a b c d : ob⦄ (h : hom c d) (g : hom b c) (f : hom a b), h ∘ (g ∘ f) ≈ (h ∘ g) ∘ f := rec (λ hom homH comp id assoc idr idl, assoc) C theorem id_left : Π ⦃a b : ob⦄ (f : hom a b), id ∘ f ≈ f := rec (λ hom homH comp id assoc idl idr, idl) C theorem id_right : Π ⦃a b : ob⦄ (f : hom a b), f ∘ id ≈ f := rec (λ hom homH comp id assoc idl idr, idr) C --the following is the only theorem for which "include C" is necessary if C is a variable (why?) theorem id_compose (a : ob) : (ID a) ∘ id ≈ id := !id_left theorem left_id_unique (H : Π{b} {f : hom b a}, i ∘ f ≈ f) : i ≈ id := calc i ≈ i ∘ id : id_right ... ≈ id : H theorem right_id_unique (H : Π{b} {f : hom a b}, f ∘ i ≈ f) : i ≈ id := calc i ≈ id ∘ i : id_left ... ≈ id : H end precategory inductive Precategory : Type := mk : Π (ob : Type), precategory ob → Precategory namespace precategory definition Mk {ob} (C) : Precategory := Precategory.mk ob C definition MK (a b c d e f g h) : Precategory := Precategory.mk a (precategory.mk b c d e f g h) definition objects [coercion] [reducible] (C : Precategory) : Type := Precategory.rec (fun c s, c) C definition category_instance [instance] [coercion] [reducible] (C : Precategory) : precategory (objects C) := Precategory.rec (fun c s, s) C end precategory open precategory theorem Category.equal (C : Precategory) : Precategory.mk C C = C := Precategory.rec (λ ob c, rfl) C