/* Copyright (c) 2013 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura */ #include "builtin.h" #include "environment.h" #include "abstract.h" #ifndef LEAN_DEFAULT_LEVEL_SEPARATION #define LEAN_DEFAULT_LEVEL_SEPARATION 512 #endif namespace lean { expr mk_bin_op(expr const & op, expr const & unit, unsigned num_args, expr const * args) { if (num_args == 0) { return unit; } else { expr r = args[num_args - 1]; unsigned i = num_args - 1; while (i > 0) { --i; r = mk_app({op, args[i], r}); } return r; } } expr mk_bin_op(expr const & op, expr const & unit, std::initializer_list const & l) { return mk_bin_op(op, unit, l.size(), l.begin()); } class bool_type_value : public value { public: static char const * g_kind; virtual ~bool_type_value() {} char const * kind() const { return g_kind; } virtual expr get_type() const { return Type(); } virtual bool normalize(unsigned num_args, expr const * args, expr & r) const { return false; } virtual bool operator==(value const & other) const { return other.kind() == kind(); } virtual void display(std::ostream & out) const { out << "bool"; } virtual format pp() const { return format("bool"); } virtual unsigned hash() const { return 17; } }; char const * bool_type_value::g_kind = "bool"; MK_BUILTIN(bool_type, bool_type_value); class bool_value_value : public value { bool m_val; public: static char const * g_kind; bool_value_value(bool v):m_val(v) {} virtual ~bool_value_value() {} char const * kind() const { return g_kind; } virtual expr get_type() const { return Bool; } virtual bool normalize(unsigned num_args, expr const * args, expr & r) const { return false; } virtual bool operator==(value const & other) const { return other.kind() == kind() && m_val == static_cast(other).m_val; } virtual void display(std::ostream & out) const { out << (m_val ? "true" : "false"); } virtual format pp() const { return format(m_val ? "true" : "false"); } virtual unsigned hash() const { return m_val ? 3 : 5; } bool get_val() const { return m_val; } }; char const * bool_value_value::g_kind = "bool_value"; expr mk_bool_value(bool v) { static thread_local expr true_val = mk_value(*(new bool_value_value(true))); static thread_local expr false_val = mk_value(*(new bool_value_value(false))); return v ? true_val : false_val; } bool is_bool_value(expr const & e) { return is_value(e) && to_value(e).kind() == bool_value_value::g_kind; } bool to_bool(expr const & e) { lean_assert(is_bool_value(e)); return static_cast(to_value(e)).get_val(); } bool is_true(expr const & e) { return is_bool_value(e) && to_bool(e); } bool is_false(expr const & e) { return is_bool_value(e) && !to_bool(e); } static level m_lvl(name("m")); static level u_lvl(name("u")); expr mk_type_m() { static thread_local expr r = Type(m_lvl); return r; } expr mk_type_u() { static thread_local expr r = Type(u_lvl); return r; } class if_fn_value : public value { expr m_type; public: static char const * g_kind; if_fn_value() { expr A = Const("A"); // Pi (A: Type), bool -> A -> A -> A m_type = Pi({A, TypeU}, Bool >> (A >> (A >> A))); } virtual ~if_fn_value() {} char const * kind() const { return g_kind; } virtual expr get_type() const { return m_type; } virtual bool normalize(unsigned num_args, expr const * args, expr & r) const { if (num_args == 5 && is_bool_value(args[2])) { if (to_bool(args[2])) r = args[3]; // if A true a b --> a else r = args[4]; // if A false a b --> b return true; } if (num_args == 5 && args[3] == args[4]) { r = args[3]; // if A c a a --> a return true; } else { return false; } } virtual bool operator==(value const & other) const { return other.kind() == kind(); } virtual void display(std::ostream & out) const { out << "if"; } virtual format pp() const { return format("if"); } virtual unsigned hash() const { return 23; } }; char const * if_fn_value::g_kind = "if"; MK_BUILTIN(if_fn, if_fn_value); MK_CONSTANT(and_fn, name("and")); MK_CONSTANT(or_fn, name("or")); MK_CONSTANT(not_fn, name("not")); MK_CONSTANT(forall_fn, name("forall")); MK_CONSTANT(exists_fn, name("exists")); MK_CONSTANT(refl_fn, name("refl")); MK_CONSTANT(subst_fn, name("subst")); MK_CONSTANT(symm_fn, name("symm")); MK_CONSTANT(trans_fn, name("trans")); MK_CONSTANT(xtrans_fn, name("xtrans")); MK_CONSTANT(congr1_fn, name("congr1")); MK_CONSTANT(congr2_fn, name("congr2")); MK_CONSTANT(congr_fn, name("congr")); MK_CONSTANT(eq_mp_fn, name("eq_mp")); MK_CONSTANT(truth, name("truth")); MK_CONSTANT(eqt_elim_fn, name("eqt_elim")); MK_CONSTANT(ext_fn, name("ext")); MK_CONSTANT(foralle_fn, name("foralle")); MK_CONSTANT(foralli_fn, name("foralli")); MK_CONSTANT(domain_inj_fn, name("domain_inj")); MK_CONSTANT(range_inj_fn, name("range_inj")); void add_basic_theory(environment & env) { env.define_uvar(uvar_name(m_lvl), level() + LEAN_DEFAULT_LEVEL_SEPARATION); env.define_uvar(uvar_name(u_lvl), m_lvl + LEAN_DEFAULT_LEVEL_SEPARATION); expr p1 = Bool >> Bool; expr p2 = Bool >> p1; expr A = Const("A"); expr a = Const("a"); expr b = Const("b"); expr c = Const("c"); expr H = Const("H"); expr H1 = Const("H1"); expr H2 = Const("H2"); expr B = Const("B"); expr f = Const("f"); expr g = Const("g"); expr h = Const("h"); expr x = Const("x"); expr y = Const("y"); expr P = Const("P"); expr A1 = Const("A1"); expr B1 = Const("B1"); expr a1 = Const("a1"); // and(x, y) = (if bool x y false) env.add_definition(and_fn_name, p2, Fun({{x, Bool}, {y, Bool}}, bIf(x, y, True))); // or(x, y) = (if bool x true y) env.add_definition(or_fn_name, p2, Fun({{x, Bool}, {y, Bool}}, bIf(x, False, y))); // not(x) = (if bool x false true) env.add_definition(not_fn_name, p1, Fun({x, Bool}, bIf(x, False, True))); // forall : Pi (A : Type u), (A -> Bool) -> Bool expr A_pred = A >> Bool; expr q_type = Pi({A, TypeU}, A_pred >> Bool); env.add_var(forall_fn_name, q_type); env.add_definition(exists_fn_name, q_type, Fun({{A,TypeU}, {P, A_pred}}, Not(Forall(A, Fun({x, A}, Not(P(x))))))); // refl : Pi (A : Type u) (a : A), a = a env.add_axiom(refl_fn_name, Pi({{A, TypeU}, {a, A}}, Eq(a, a))); // subst : Pi (A : Type u) (P : A -> bool) (a b : A) (H1 : P a) (H2 : a = b), P b env.add_axiom(subst_fn_name, Pi({{A, TypeU}, {P, A_pred}, {a, A}, {b, A}, {H1, P(a)}, {H2, Eq(a,b)}}, P(b))); // symm : Pi (A : Type u) (a b : A) (H : a = b), b = a := // Subst A (Fun x : A => x = a) a b (Refl A a) H env.add_theorem(symm_fn_name, Pi({{A, TypeU}, {a, A}, {b, A}, {H, Eq(a, b)}}, Eq(b, a)), Fun({{A, TypeU}, {a, A}, {b, A}, {H, Eq(a, b)}}, Subst(A, Fun({x, A}, Eq(x,a)), a, b, Refl(A, a), H))); // trans: Pi (A: Type u) (a b c : A) (H1 : a = b) (H2 : b = c), a = c := // Subst A (Fun x : A => a = x) b c H1 H2 env.add_theorem(trans_fn_name, Pi({{A, TypeU}, {a, A}, {b, A}, {c, A}, {H1, Eq(a, b)}, {H2, Eq(b, c)}}, Eq(a, c)), Fun({{A, TypeU}, {a, A}, {b, A}, {c, A}, {H1, Eq(a,b)}, {H2, Eq(b,c)}}, Subst(A, Fun({x, A}, Eq(a, x)), b, c, H1, H2))); // xtrans: Pi (A: Type u) (B : Type u) (a : A) (b c : B) (H1 : a = b) (H2 : b = c), a = c := // Subst B (Fun x : B => a = x) b c H1 H2 env.add_theorem(xtrans_fn_name, Pi({{A, TypeU}, {B, TypeU}, {a, A}, {b, B}, {c, B}, {H1, Eq(a, b)}, {H2, Eq(b, c)}}, Eq(a, c)), Fun({{A, TypeU}, {B, TypeU}, {a, A}, {b, B}, {c, B}, {H1, Eq(a, b)}, {H2, Eq(b, c)}}, Subst(B, Fun({x, B}, Eq(a, x)), b, c, H1, H2))); expr piABx = Pi({x, A}, B(x)); expr A_arrow_u = A >> TypeU; // congr1 : Pi (A : Type u) (B : A -> Type u) (f g: Pi (x : A) B x) (a : A) (H : f = g), f a = g a := // Subst piABx (Fun h : piABx => f a = h a) f g (Refl piABx f) H env.add_theorem(congr1_fn_name, Pi({{A, TypeU}, {B, A_arrow_u}, {f, piABx}, {g, piABx}, {a, A}, {H, Eq(f, g)}}, Eq(f(a), g(a))), Fun({{A, TypeU}, {B, A_arrow_u}, {f, piABx}, {g, piABx}, {a, A}, {H, Eq(f, g)}}, Subst(piABx, Fun({h, piABx}, Eq(f(a), h(a))), f, g, Refl(piABx, f), H))); // congr2 : Pi (A : Type u) (B : A -> Type u) (f : Pi (x : A) B x) (a b : A) (H : a = b), f a = f b := // Subst A (Fun x : A => f a = f x) a b (Refl A a) H env.add_theorem(congr2_fn_name, Pi({{A, TypeU}, {B, A_arrow_u}, {f, piABx}, {a, A}, {b, A}, {H, Eq(a, b)}}, Eq(f(a), f(b))), Fun({{A, TypeU}, {B, A_arrow_u}, {f, piABx}, {a, A}, {b, A}, {H, Eq(a, b)}}, Subst(A, Fun({x, A}, Eq(f(a), f(x))), a, b, Refl(A, a), H))); // congr : Pi (A : Type u) (B : A -> Type u) (f g : Pi (x : A) B x) (a b : A) (H1 : f = g) (H2 : a = b), f a = g b := // xTrans (B a) (B b) (f a) (f b) (g b) (congr2 A B f g b H1) (congr1 A B f a b H2) env.add_theorem(congr_fn_name, Pi({{A, TypeU}, {B, A_arrow_u}, {f, piABx}, {g, piABx}, {a, A}, {b, A}, {H1, Eq(f, g)}, {H2, Eq(a, b)}}, Eq(f(a), g(b))), Fun({{A, TypeU}, {B, A_arrow_u}, {f, piABx}, {g, piABx}, {a, A}, {b, A}, {H1, Eq(f, g)}, {H2, Eq(a, b)}}, xTrans(B(a), B(b), f(a), f(b), g(b), Congr2(A, B, f, a, b, H2), Congr1(A, B, f, g, b, H1)))); // eq_mp : Pi (a b: Bool) (H1 : a = b) (H2 : a), b := // Subst Bool (Fun x : Bool => x) a b H2 H1 env.add_theorem(eq_mp_fn_name, Pi({{a, Bool}, {b, Bool}, {H1, Eq(a, b)}, {H2, a}}, b), Fun({{a, Bool}, {b, Bool}, {H1, Eq(a, b)}, {H2, a}}, Subst(Bool, Fun({x, Bool}, x), a, b, H2, H1))); // truth : True := Refl Bool True env.add_theorem(truth_name, True, Refl(Bool, True)); // eqt_elim : Pi (a : Bool) (H : a = True), a := EqMP(True, a, Symm(Bool, a, True, H), Truth) env.add_theorem(eqt_elim_fn_name, Pi({{a, Bool}, {H, Eq(a, True)}}, a), Fun({{a, Bool}, {H, Eq(a, True)}}, EqMP(True, a, Symm(Bool, a, True, H), Truth))); // ext : Pi (A : Type u) (B : A -> Type u) (f g : Pi (x : A) B x) (H : Pi x : A, (f x) = (g x)), f = g env.add_axiom(ext_fn_name, Pi({{A, TypeU}, {B, A_arrow_u}, {f, piABx}, {g, piABx}, {H, Pi({x, A}, Eq(f(x), g(x)))}}, Eq(f, g))); // foralle : Pi (A : Type u) (P : A -> bool) (H : (forall A P)) (a : A), P a env.add_axiom(foralle_fn_name, Pi({{A, TypeU}, {P, A_pred}, {H, mk_forall(A, P)}, {a, A}}, P(a))); // foralli : Pi (A : Type u) (P : A -> bool) (H : Pi (x : A), P x), (forall A P) env.add_axiom(foralli_fn_name, Pi({{A, TypeU}, {P, A_pred}, {H, Pi({x, A}, P(x))}}, Forall(A, P))); // domain_inj : Pi (A A1: Type u) (B : A -> Type u) (B1 : A1 -> Type u) (H : (Pi (x : A), B x) = (Pi (x : A1), B1 x)), A = A1 expr piA1B1x = Pi({x, A1}, B1(x)); expr A1_arrow_u = A1 >> TypeU; env.add_axiom(domain_inj_fn_name, Pi({{A, TypeU}, {A1, TypeU}, {B, A_arrow_u}, {B1, A1_arrow_u}, {H, Eq(piABx, piA1B1x)}}, Eq(A, A1))); // range_inj : Pi (A A1: Type u) (B : A -> Type u) (B1 : A1 -> Type u) (a : A) (a1 : A1) (H : (Pi (x : A), B x) = (Pi (x : A1), B1 x)), (B a) = (B1 a1) env.add_axiom(range_inj_fn_name, Pi({{A, TypeU}, {A1, TypeU}, {B, A_arrow_u}, {B1, A1_arrow_u}, {a, A}, {a1, A1}, {H, Eq(piABx, piA1B1x)}}, Eq(B(a), B1(a1)))); } }