-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura, Jeremy Avigad import logic.core.prop logic.core.inhabited logic.core.decidable open inhabited decidable eq.ops -- data.sum -- ======== -- The sum type, aka disjoint union. inductive sum (A B : Type) : Type := inl : A → sum A B, inr : B → sum A B namespace sum infixr `⊎` := sum namespace extra_notation infixr `+`:25 := sum -- conflicts with notation for addition end extra_notation protected definition rec_on {A B : Type} {C : (A ⊎ B) → Type} (s : A ⊎ B) (H1 : ∀a : A, C (inl B a)) (H2 : ∀b : B, C (inr A b)) : C s := rec H1 H2 s protected definition cases_on {A B : Type} {P : (A ⊎ B) → Prop} (s : A ⊎ B) (H1 : ∀a : A, P (inl B a)) (H2 : ∀b : B, P (inr A b)) : P s := rec H1 H2 s -- Here is the trick for the theorems that follow: -- Fixing a1, "f s" is a recursive description of "inl B a1 = s". -- When s is (inl B a1), it reduces to a1 = a1. -- When s is (inl B a2), it reduces to a1 = a2. -- When s is (inr A b), it reduces to false. theorem inl_inj {A B : Type} {a1 a2 : A} (H : inl B a1 = inl B a2) : a1 = a2 := let f := λs, rec_on s (λa, a1 = a) (λb, false) in have H1 : f (inl B a1), from rfl, have H2 : f (inl B a2), from H ▸ H1, H2 theorem inl_neq_inr {A B : Type} {a : A} {b : B} (H : inl B a = inr A b) : false := let f := λs, rec_on s (λa', a = a') (λb, false) in have H1 : f (inl B a), from rfl, have H2 : f (inr A b), from H ▸ H1, H2 theorem inr_inj {A B : Type} {b1 b2 : B} (H : inr A b1 = inr A b2) : b1 = b2 := let f := λs, rec_on s (λa, false) (λb, b1 = b) in have H1 : f (inr A b1), from rfl, have H2 : f (inr A b2), from H ▸ H1, H2 protected definition is_inhabited_left [instance] {A B : Type} (H : inhabited A) : inhabited (A ⊎ B) := inhabited.mk (inl B (default A)) protected definition is_inhabited_right [instance] {A B : Type} (H : inhabited B) : inhabited (A ⊎ B) := inhabited.mk (inr A (default B)) protected definition has_eq_decidable [instance] {A B : Type} (H1 : decidable_eq A) (H2 : decidable_eq B) : decidable_eq (A ⊎ B) := take s1 s2 : A ⊎ B, rec_on s1 (take a1, show decidable (inl B a1 = s2), from rec_on s2 (take a2, show decidable (inl B a1 = inl B a2), from decidable.rec_on (H1 a1 a2) (assume Heq : a1 = a2, decidable.inl (Heq ▸ rfl)) (assume Hne : a1 ≠ a2, decidable.inr (mt inl_inj Hne))) (take b2, have H3 : (inl B a1 = inr A b2) ↔ false, from iff.intro inl_neq_inr (assume H4, false_elim H4), show decidable (inl B a1 = inr A b2), from decidable_iff_equiv _ (iff.symm H3))) (take b1, show decidable (inr A b1 = s2), from rec_on s2 (take a2, have H3 : (inr A b1 = inl B a2) ↔ false, from iff.intro (assume H4, inl_neq_inr (H4⁻¹)) (assume H4, false_elim H4), show decidable (inr A b1 = inl B a2), from decidable_iff_equiv _ (iff.symm H3)) (take b2, show decidable (inr A b1 = inr A b2), from decidable.rec_on (H2 b1 b2) (assume Heq : b1 = b2, decidable.inl (Heq ▸ rfl)) (assume Hne : b1 ≠ b2, decidable.inr (mt inr_inj Hne)))) end sum