-- Copyright (c) 2014 Microsoft Corporation. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Leonardo de Moura import logic.eq logic.quantifiers open eq.ops -- cast.lean -- ========= section universe variable u variables {A B : Type.{u}} definition cast (H : A = B) (a : A) : B := eq.rec a H theorem cast_refl (a : A) : cast (eq.refl A) a = a := rfl theorem cast_proof_irrel (H₁ H₂ : A = B) (a : A) : cast H₁ a = cast H₂ a := rfl theorem cast_eq (H : A = A) (a : A) : cast H a = a := rfl end namespace heq universe variable u variables {A B C : Type.{u}} {a a' : A} {b b' : B} {c : C} theorem to_cast_eq (H : a == b) : cast (type_eq H) a = b := drec_on H !cast_eq end heq section universe variables u v variables {A A' B C : Type.{u}} {P P' : A → Type.{v}} {a a' : A} {b : B} -- should H₁ be explicit (useful in e.g. hproof_irrel) theorem eq_rec_to_heq {H₁ : a = a'} {p : P a} {p' : P a'} (H₂ : eq.rec_on H₁ p = p') : p == p' := calc p == eq.rec_on H₁ p : heq.symm (eq_rec_heq H₁ p) ... = p' : H₂ theorem cast_to_heq {H₁ : A = B} (H₂ : cast H₁ a = b) : a == b := eq_rec_to_heq H₂ theorem hproof_irrel {a b : Prop} (H : a = b) (H₁ : a) (H₂ : b) : H₁ == H₂ := eq_rec_to_heq (proof_irrel (cast H H₁) H₂) --TODO: generalize to eq.rec. This is a special case of rec_on_compose in eq.lean theorem cast_trans (Hab : A = B) (Hbc : B = C) (a : A) : cast Hbc (cast Hab a) = cast (Hab ⬝ Hbc) a := heq.to_eq (calc cast Hbc (cast Hab a) == cast Hab a : eq_rec_heq Hbc (cast Hab a) ... == a : eq_rec_heq Hab a ... == cast (Hab ⬝ Hbc) a : heq.symm (eq_rec_heq (Hab ⬝ Hbc) a)) theorem pi_eq (H : P = P') : (Π x, P x) = (Π x, P' x) := H ▸ (eq.refl (Π x, P x)) theorem rec_on_app (H : P = P') (f : Π x, P x) (a : A) : eq.rec_on H f a == f a := have aux : ∀ H : P = P, eq.rec_on H f a == f a, from take H : P = P, heq.refl (eq.rec_on H f a), (H ▸ aux) H theorem rec_on_pull (H : P = P') (f : Π x, P x) (a : A) : eq.rec_on H f a = eq.rec_on (congr_fun H a) (f a) := heq.to_eq (calc eq.rec_on H f a == f a : rec_on_app H f a ... == eq.rec_on (congr_fun H a) (f a) : heq.symm (eq_rec_heq (congr_fun H a) (f a))) theorem cast_app (H : P = P') (f : Π x, P x) (a : A) : cast (pi_eq H) f a == f a := have H₁ : ∀ (H : (Π x, P x) = (Π x, P x)), cast H f a == f a, from assume H, heq.from_eq (congr_fun (cast_eq H f) a), have H₂ : ∀ (H : (Π x, P x) = (Π x, P' x)), cast H f a == f a, from H ▸ H₁, H₂ (pi_eq H) end section variables {A : Type} {B : A → Type} {C : Πa, B a → Type} {D : Πa b, C a b → Type} {E : Πa b c, D a b c → Type} {F : Type} variables {a a' : A} {b : B a} {b' : B a'} {c : C a b} {c' : C a' b'} {d : D a b c} {d' : D a' b' c'} theorem hcongr_arg4 (f : Πa b c d, E a b c d) (Ha : a = a') (Hb : b == b') (Hc : c == c') (Hd : d == d') : f a b c d == f a' b' c' d' := hcongr (hcongr_arg3 f Ha Hb Hc) (hcongr_arg3 E Ha Hb Hc) Hd theorem dcongr_arg2 (f : Πa, B a → F) (Ha : a = a') (Hb : eq.rec_on Ha b = b') : f a b = f a' b' := heq.to_eq (hcongr_arg2 f Ha (eq_rec_to_heq Hb)) theorem dcongr_arg3 (f : Πa b, C a b → F) (Ha : a = a') (Hb : eq.rec_on Ha b = b') (Hc : cast (dcongr_arg2 C Ha Hb) c = c') : f a b c = f a' b' c' := heq.to_eq (hcongr_arg3 f Ha (eq_rec_to_heq Hb) (eq_rec_to_heq Hc)) theorem dcongr_arg4 (f : Πa b c, D a b c → F) (Ha : a = a') (Hb : eq.rec_on Ha b = b') (Hc : cast (dcongr_arg2 C Ha Hb) c = c') (Hd : cast (dcongr_arg3 D Ha Hb Hc) d = d') : f a b c d = f a' b' c' d' := heq.to_eq (hcongr_arg4 f Ha (eq_rec_to_heq Hb) (eq_rec_to_heq Hc) (eq_rec_to_heq Hd)) --mixed versions (we want them for example if C a' b' is a subsingleton, like a proposition. Then proving eq is easier than proving heq) theorem hdcongr_arg3 (f : Πa b, C a b → F) (Ha : a = a') (Hb : b == b') (Hc : cast (heq.to_eq (hcongr_arg2 C Ha Hb)) c = c') : f a b c = f a' b' c' := heq.to_eq (hcongr_arg3 f Ha Hb (eq_rec_to_heq Hc)) theorem hhdcongr_arg4 (f : Πa b c, D a b c → F) (Ha : a = a') (Hb : b == b') (Hc : c == c') (Hd : cast (dcongr_arg3 D Ha (!eq.rec_on_irrel_arg ⬝ heq.to_cast_eq Hb) (!eq.rec_on_irrel_arg ⬝ heq.to_cast_eq Hc)) d = d') : f a b c d = f a' b' c' d' := heq.to_eq (hcongr_arg4 f Ha Hb Hc (eq_rec_to_heq Hd)) theorem hddcongr_arg4 (f : Πa b c, D a b c → F) (Ha : a = a') (Hb : b == b') (Hc : cast (heq.to_eq (hcongr_arg2 C Ha Hb)) c = c') (Hd : cast (hdcongr_arg3 D Ha Hb Hc) d = d') : f a b c d = f a' b' c' d' := heq.to_eq (hcongr_arg4 f Ha Hb (eq_rec_to_heq Hc) (eq_rec_to_heq Hd)) --Is a reasonable version of "hcongr2" provable without pi_ext and funext? --It looks like you need some ugly extra conditions -- theorem hcongr2' {A A' : Type} {B : A → Type} {B' : A' → Type} {C : Πa, B a → Type} {C' : Πa, B' a → Type} -- {f : Π a b, C a b} {f' : Π a' b', C' a' b'} {a : A} {a' : A'} {b : B a} {b' : B' a'} -- (HBB' : B == B') (HCC' : C == C') -- (Hff' : f == f') (Haa' : a == a') (Hbb' : b == b') : f a b == f' a' b' := -- hcongr (hcongr Hff' (sorry) Haa') (hcongr HCC' (sorry) Haa') Hbb' end