/- Copyright (c) 2014 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Floris van Doorn, Leonardo de Moura This file demonstrates how to encode vectors using indexed inductive families. In standard library we do not use this approach. -/ import data.nat data.list data.fin open nat prod fin algebra inductive vector (A : Type) : nat → Type := | nil {} : vector A zero | cons : Π {n}, A → vector A n → vector A (succ n) namespace vector notation a :: b := cons a b notation `[` l:(foldr `, ` (h t, cons h t) nil `]`) := l variables {A B C : Type} protected definition is_inhabited [instance] [h : inhabited A] : ∀ (n : nat), inhabited (vector A n) | 0 := inhabited.mk [] | (n+1) := inhabited.mk (inhabited.value h :: inhabited.value (is_inhabited n)) theorem vector0_eq_nil : ∀ (v : vector A 0), v = [] | [] := rfl definition head : Π {n : nat}, vector A (succ n) → A | n (a::v) := a definition tail : Π {n : nat}, vector A (succ n) → vector A n | n (a::v) := v theorem head_cons {n : nat} (h : A) (t : vector A n) : head (h :: t) = h := rfl theorem tail_cons {n : nat} (h : A) (t : vector A n) : tail (h :: t) = t := rfl theorem eta : ∀ {n : nat} (v : vector A (succ n)), head v :: tail v = v | n (a::v) := rfl definition last : Π {n : nat}, vector A (succ n) → A | last [a] := a | last (a::v) := last v theorem last_singleton (a : A) : last [a] = a := rfl theorem last_cons {n : nat} (a : A) (v : vector A (succ n)) : last (a :: v) = last v := rfl definition const : Π (n : nat), A → vector A n | 0 a := [] | (succ n) a := a :: const n a theorem head_const (n : nat) (a : A) : head (const (succ n) a) = a := rfl theorem last_const : ∀ (n : nat) (a : A), last (const (succ n) a) = a | 0 a := rfl | (n+1) a := last_const n a definition nth : Π {n : nat}, vector A n → fin n → A | ⌞0⌟ [] i := elim0 i | ⌞n+1⌟ (a :: v) (mk 0 _) := a | ⌞n+1⌟ (a :: v) (mk (succ i) h) := nth v (mk_pred i h) lemma nth_zero {n : nat} (a : A) (v : vector A n) (h : 0 < succ n) : nth (a::v) (mk 0 h) = a := rfl lemma nth_succ {n : nat} (a : A) (v : vector A n) (i : nat) (h : succ i < succ n) : nth (a::v) (mk (succ i) h) = nth v (mk_pred i h) := rfl definition tabulate : Π {n : nat}, (fin n → A) → vector A n | 0 f := [] | (n+1) f := f (fin.zero n) :: tabulate (λ i : fin n, f (succ i)) theorem nth_tabulate : ∀ {n : nat} (f : fin n → A) (i : fin n), nth (tabulate f) i = f i | 0 f i := elim0 i | (n+1) f (mk 0 h) := by reflexivity | (n+1) f (mk (succ i) h) := begin change nth (f (fin.zero n) :: tabulate (λ i : fin n, f (succ i))) (mk (succ i) h) = f (mk (succ i) h), rewrite nth_succ, rewrite nth_tabulate end definition map (f : A → B) : Π {n : nat}, vector A n → vector B n | map [] := [] | map (a::v) := f a :: map v theorem map_nil (f : A → B) : map f [] = [] := rfl theorem map_cons {n : nat} (f : A → B) (h : A) (t : vector A n) : map f (h :: t) = f h :: map f t := rfl theorem nth_map (f : A → B) : ∀ {n : nat} (v : vector A n) (i : fin n), nth (map f v) i = f (nth v i) | 0 v i := elim0 i | (succ n) (a :: t) (mk 0 h) := by reflexivity | (succ n) (a :: t) (mk (succ i) h) := by rewrite [map_cons, *nth_succ, nth_map] section open function theorem map_id : ∀ {n : nat} (v : vector A n), map id v = v | 0 [] := rfl | (succ n) (x::xs) := by rewrite [map_cons, map_id] theorem map_map (g : B → C) (f : A → B) : ∀ {n :nat} (v : vector A n), map g (map f v) = map (g ∘ f) v | 0 [] := rfl | (succ n) (a :: l) := show (g ∘ f) a :: map g (map f l) = map (g ∘ f) (a :: l), by rewrite (map_map l) end definition map2 (f : A → B → C) : Π {n : nat}, vector A n → vector B n → vector C n | map2 [] [] := [] | map2 (a::va) (b::vb) := f a b :: map2 va vb theorem map2_nil (f : A → B → C) : map2 f [] [] = [] := rfl theorem map2_cons {n : nat} (f : A → B → C) (h₁ : A) (h₂ : B) (t₁ : vector A n) (t₂ : vector B n) : map2 f (h₁ :: t₁) (h₂ :: t₂) = f h₁ h₂ :: map2 f t₁ t₂ := rfl definition append : Π {n m : nat}, vector A n → vector A m → vector A (n ⊕ m) | 0 m [] w := w | (succ n) m (a::v) w := a :: (append v w) theorem append_nil_left {n : nat} (v : vector A n) : append [] v = v := rfl theorem append_cons {n m : nat} (h : A) (t : vector A n) (v : vector A m) : append (h::t) v = h :: (append t v) := rfl theorem map_append (f : A → B) : ∀ {n m : nat} (v : vector A n) (w : vector A m), map f (append v w) = append (map f v) (map f w) | 0 m [] w := rfl | (n+1) m (h :: t) w := begin change (f h :: map f (append t w) = f h :: append (map f t) (map f w)), rewrite map_append end definition unzip : Π {n : nat}, vector (A × B) n → vector A n × vector B n | unzip [] := ([], []) | unzip ((a, b) :: v) := (a :: pr₁ (unzip v), b :: pr₂ (unzip v)) theorem unzip_nil : unzip (@nil (A × B)) = ([], []) := rfl theorem unzip_cons {n : nat} (a : A) (b : B) (v : vector (A × B) n) : unzip ((a, b) :: v) = (a :: pr₁ (unzip v), b :: pr₂ (unzip v)) := rfl definition zip : Π {n : nat}, vector A n → vector B n → vector (A × B) n | zip [] [] := [] | zip (a::va) (b::vb) := ((a, b) :: zip va vb) theorem zip_nil_nil : zip (@nil A) (@nil B) = nil := rfl theorem zip_cons_cons {n : nat} (a : A) (b : B) (va : vector A n) (vb : vector B n) : zip (a::va) (b::vb) = ((a, b) :: zip va vb) := rfl theorem unzip_zip : ∀ {n : nat} (v₁ : vector A n) (v₂ : vector B n), unzip (zip v₁ v₂) = (v₁, v₂) | 0 [] [] := rfl | (n+1) (a::va) (b::vb) := calc unzip (zip (a :: va) (b :: vb)) = (a :: pr₁ (unzip (zip va vb)), b :: pr₂ (unzip (zip va vb))) : rfl ... = (a :: pr₁ (va, vb), b :: pr₂ (va, vb)) : by rewrite unzip_zip ... = (a :: va, b :: vb) : rfl theorem zip_unzip : ∀ {n : nat} (v : vector (A × B) n), zip (pr₁ (unzip v)) (pr₂ (unzip v)) = v | 0 [] := rfl | (n+1) ((a, b) :: v) := calc zip (pr₁ (unzip ((a, b) :: v))) (pr₂ (unzip ((a, b) :: v))) = (a, b) :: zip (pr₁ (unzip v)) (pr₂ (unzip v)) : rfl ... = (a, b) :: v : by rewrite zip_unzip /- Concat -/ definition concat : Π {n : nat}, vector A n → A → vector A (succ n) | concat [] a := [a] | concat (b::v) a := b :: concat v a theorem concat_nil (a : A) : concat [] a = [a] := rfl theorem concat_cons {n : nat} (b : A) (v : vector A n) (a : A) : concat (b :: v) a = b :: concat v a := rfl theorem last_concat : ∀ {n : nat} (v : vector A n) (a : A), last (concat v a) = a | 0 [] a := rfl | (n+1) (b::v) a := calc last (concat (b::v) a) = last (concat v a) : rfl ... = a : last_concat v a /- Reverse -/ definition reverse : Π {n : nat}, vector A n → vector A n | 0 [] := [] | (n+1) (x :: xs) := concat (reverse xs) x theorem reverse_concat : Π {n : nat} (xs : vector A n) (a : A), reverse (concat xs a) = a :: reverse xs | 0 [] a := rfl | (n+1) (x :: xs) a := begin change (concat (reverse (concat xs a)) x = a :: reverse (x :: xs)), rewrite reverse_concat end theorem reverse_reverse : Π {n : nat} (xs : vector A n), reverse (reverse xs) = xs | 0 [] := rfl | (n+1) (x :: xs) := begin change (reverse (concat (reverse xs) x) = x :: xs), rewrite [reverse_concat, reverse_reverse] end /- list <-> vector -/ definition of_list : Π (l : list A), vector A (list.length l) | list.nil := [] | (list.cons a l) := a :: (of_list l) definition to_list : Π {n : nat}, vector A n → list A | 0 [] := list.nil | (n+1) (a :: vs) := list.cons a (to_list vs) theorem to_list_of_list : ∀ (l : list A), to_list (of_list l) = l | list.nil := rfl | (list.cons a l) := begin change (list.cons a (to_list (of_list l)) = list.cons a l), rewrite to_list_of_list end theorem to_list_nil : to_list [] = (list.nil : list A) := rfl theorem length_to_list : ∀ {n : nat} (v : vector A n), list.length (to_list v) = n | 0 [] := rfl | (n+1) (a :: vs) := begin change (succ (list.length (to_list vs)) = succ n), rewrite length_to_list end theorem heq_of_list_eq : ∀ {n m} {v₁ : vector A n} {v₂ : vector A m}, to_list v₁ = to_list v₂ → n = m → v₁ == v₂ | 0 0 [] [] h₁ h₂ := !heq.refl | 0 (m+1) [] (y::ys) h₁ h₂ := by contradiction | (n+1) 0 (x::xs) [] h₁ h₂ := by contradiction | (n+1) (m+1) (x::xs) (y::ys) h₁ h₂ := assert e₁ : n = m, from succ.inj h₂, assert e₂ : x = y, begin unfold to_list at h₁, injection h₁, assumption end, have to_list xs = to_list ys, begin unfold to_list at h₁, injection h₁, assumption end, assert xs == ys, from heq_of_list_eq this e₁, assert y :: xs == y :: ys, begin clear heq_of_list_eq h₁ h₂, revert xs ys this, induction e₁, intro xs ys h, rewrite [heq.to_eq h] end, show x :: xs == y :: ys, by rewrite e₂; exact this theorem list_eq_of_heq {n m} {v₁ : vector A n} {v₂ : vector A m} : v₁ == v₂ → n = m → to_list v₁ = to_list v₂ := begin intro h₁ h₂, revert v₁ v₂ h₁, subst n, intro v₁ v₂ h₁, rewrite [heq.to_eq h₁] end theorem of_list_to_list {n : nat} (v : vector A n) : of_list (to_list v) == v := begin apply heq_of_list_eq, rewrite to_list_of_list, rewrite length_to_list end theorem to_list_append : ∀ {n m : nat} (v₁ : vector A n) (v₂ : vector A m), to_list (append v₁ v₂) = list.append (to_list v₁) (to_list v₂) | 0 m [] ys := rfl | (succ n) m (x::xs) ys := begin unfold append, unfold to_list at {1,2}, krewrite [to_list_append xs ys] end theorem to_list_map (f : A → B) : ∀ {n : nat} (v : vector A n), to_list (map f v) = list.map f (to_list v) | 0 [] := rfl | (succ n) (x::xs) := begin unfold [map, to_list], rewrite to_list_map end theorem to_list_concat : ∀ {n : nat} (v : vector A n) (a : A), to_list (concat v a) = list.concat a (to_list v) | 0 [] a := rfl | (succ n) (x::xs) a := begin unfold [concat, to_list], rewrite to_list_concat end theorem to_list_reverse : ∀ {n : nat} (v : vector A n), to_list (reverse v) = list.reverse (to_list v) | 0 [] := rfl | (succ n) (x::xs) := begin unfold [reverse], rewrite [to_list_concat, to_list_reverse] end theorem append_nil_right {n : nat} (v : vector A n) : append v [] == v := begin apply heq_of_list_eq, rewrite [to_list_append, to_list_nil, list.append_nil_right], rewrite [-add_eq_addl] end theorem append.assoc {n₁ n₂ n₃ : nat} (v₁ : vector A n₁) (v₂ : vector A n₂) (v₃ : vector A n₃) : append v₁ (append v₂ v₃) == append (append v₁ v₂) v₃ := begin apply heq_of_list_eq, rewrite [*to_list_append, list.append.assoc], rewrite [-*add_eq_addl, add.assoc] end theorem reverse_append {n m : nat} (v : vector A n) (w : vector A m) : reverse (append v w) == append (reverse w) (reverse v) := begin apply heq_of_list_eq, rewrite [to_list_reverse, to_list_append, list.reverse_append, to_list_append, *to_list_reverse], rewrite [-*add_eq_addl, add.comm] end theorem concat_eq_append {n : nat} (v : vector A n) (a : A) : concat v a == append v [a] := begin apply heq_of_list_eq, rewrite [to_list_concat, to_list_append, list.concat_eq_append], rewrite [-add_eq_addl] end /- decidable equality -/ open decidable definition decidable_eq [H : decidable_eq A] : ∀ {n : nat} (v₁ v₂ : vector A n), decidable (v₁ = v₂) | ⌞0⌟ [] [] := by left; reflexivity | ⌞n+1⌟ (a::v₁) (b::v₂) := match H a b with | inl Hab := match decidable_eq v₁ v₂ with | inl He := by left; congruence; repeat assumption | inr Hn := by right; intro h; injection h; contradiction end | inr Hnab := by right; intro h; injection h; contradiction end section open equiv function definition vector_equiv_of_equiv {A B : Type} : A ≃ B → ∀ n, vector A n ≃ vector B n | (mk f g l r) n := mk (map f) (map g) begin intros, rewrite [map_map, id_of_left_inverse l, map_id], reflexivity end begin intros, rewrite [map_map, id_of_righ_inverse r, map_id], reflexivity end end end vector