/* Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura */ #include #include "util/lbool.h" #include "util/interrupt.h" #include "util/sexpr/option_declarations.h" #include "kernel/instantiate.h" #include "kernel/metavar.h" #include "kernel/abstract.h" #include "kernel/for_each_fn.h" #include "library/normalize.h" #include "library/reducible.h" #include "library/class.h" #include "library/local_context.h" #include "library/generic_exception.h" #include "library/io_state_stream.h" #include "library/replace_visitor.h" #include "library/constants.h" #include "library/pp_options.h" #include "library/choice_iterator.h" #include "library/type_inference.h" #include "library/class_instance_resolution.h" #ifndef LEAN_DEFAULT_CLASS_TRACE_INSTANCES #define LEAN_DEFAULT_CLASS_TRACE_INSTANCES false #endif #ifndef LEAN_DEFAULT_CLASS_INSTANCE_MAX_DEPTH #define LEAN_DEFAULT_CLASS_INSTANCE_MAX_DEPTH 32 #endif #ifndef LEAN_DEFAULT_CLASS_TRANS_INSTANCES #define LEAN_DEFAULT_CLASS_TRANS_INSTANCES true #endif namespace lean { [[ noreturn ]] void throw_class_exception(char const * msg, expr const & m) { throw_generic_exception(msg, m); } [[ noreturn ]] void throw_class_exception(expr const & m, pp_fn const & fn) { throw_generic_exception(m, fn); } static name * g_class_trace_instances = nullptr; static name * g_class_instance_max_depth = nullptr; static name * g_class_trans_instances = nullptr; static name * g_prefix = nullptr; LEAN_THREAD_PTR(ci_local_metavar_types, g_lm_types); LEAN_THREAD_PTR(io_state, g_ios); bool get_class_trace_instances(options const & o) { return o.get_bool(*g_class_trace_instances, LEAN_DEFAULT_CLASS_TRACE_INSTANCES); } unsigned get_class_instance_max_depth(options const & o) { return o.get_unsigned(*g_class_instance_max_depth, LEAN_DEFAULT_CLASS_INSTANCE_MAX_DEPTH); } bool get_class_trans_instances(options const & o) { return o.get_bool(*g_class_trans_instances, LEAN_DEFAULT_CLASS_TRANS_INSTANCES); } class default_ci_local_metavar_types : public ci_local_metavar_types { public: virtual expr infer_local(expr const & e) { return mlocal_type(e); } virtual expr infer_metavar(expr const & e) { return mlocal_type(e); } }; static expr ci_infer_local(expr const & e) { return g_lm_types->infer_local(e); } static expr ci_infer_metavar(expr const & e) { return g_lm_types->infer_metavar(e); } /** \brief The following global thread local constant is a big hack for mk_subsingleton_instance. When g_subsingleton_hack is true, the following type-class resolution problem fails Given (A : Type{?u}), where ?u is a universe meta-variable created by an external module, ?Inst : subsingleton.{?u} A := subsingleton_prop ?M This case generates the unification problem subsingleton.{?u} A =?= subsingleton.{0} ?M which can be solved by assigning (?u := 0) and (?M := A) when the hack is enabled, the is_def_eq method in the type class module fails at the subproblem: ?u =?= 0 That is, when the hack is on, type-class resolution cannot succeed by instantiating an external universe meta-variable with 0. */ LEAN_THREAD_VALUE(bool, g_subsingleton_hack, false); struct cienv { typedef rb_map uassignment; typedef rb_map eassignment; typedef std::unique_ptr ti_ptr; environment m_env; pos_info_provider const * m_pip; ti_ptr m_ti_ptr; optional m_pos; expr_struct_map m_cache; name_predicate m_not_reducible_pred; list m_ctx; buffer> m_local_instances; unsigned m_next_local_idx; unsigned m_next_uvar_idx; unsigned m_next_mvar_idx; struct stack_entry { // We only use transitive instances when we can solve the problem in a single step. // That is, the transitive instance does not have any instance argument, OR // it uses local instances to fill them. // We accomplish that by not considering global instances when solving // transitive instance subproblems. expr m_mvar; unsigned m_depth; bool m_trans_inst_subproblem; stack_entry(expr const & m, unsigned d, bool s = false): m_mvar(m), m_depth(d), m_trans_inst_subproblem(s) {} }; struct state { bool m_trans_inst_subproblem; list m_stack; // stack of meta-variables that need to be synthesized; uassignment m_uassignment; eassignment m_eassignment; state():m_trans_inst_subproblem(false) {} }; state m_state; // active state struct choice { list m_local_instances; list m_trans_instances; list m_instances; state m_state; }; std::vector m_choices; expr m_main_mvar; bool m_multiple_instances; bool m_displayed_trace_header; // configuration options m_options; // it is used for pretty printing unsigned m_max_depth; bool m_trans_instances; bool m_trace_instances; class ti : public type_inference { cienv & m_cienv; std::vector m_stack; public: ti(cienv & e):type_inference(e.m_env), m_cienv(e) {} virtual bool is_extra_opaque(name const & n) const { return m_cienv.is_not_reducible(n); } virtual expr mk_tmp_local(expr const & type, binder_info const & bi) { return m_cienv.mk_local(type, bi); } virtual bool is_tmp_local(expr const & e) const { return m_cienv.is_internal_local(e); } virtual bool is_uvar(level const & l) const { return cienv::is_uvar(l); } virtual bool is_mvar(expr const & e) const { return m_cienv.is_mvar(e); } virtual level const * get_assignment(level const & u) const { return m_cienv.get_assignment(u); } virtual expr const * get_assignment(expr const & m) const { return m_cienv.get_assignment(m); } virtual void update_assignment(level const & u, level const & v) { return m_cienv.update_assignment(u, v); } virtual void update_assignment(expr const & m, expr const & v) { return m_cienv.update_assignment(m, v); } virtual expr infer_local(expr const & e) const { return ci_infer_local(e); } virtual expr infer_metavar(expr const & e) const { return ci_infer_metavar(e); } virtual void push() { m_stack.push_back(m_cienv.m_state); } virtual void pop() { m_cienv.m_state = m_stack.back(); m_stack.pop_back(); } virtual void commit() { m_stack.pop_back(); } static bool has_meta_arg(expr e) { while (is_app(e)) { if (is_meta(app_arg(e))) return true; e = app_fn(e); } return false; } /** IF \c e is of the form (f ... (?m t_1 ... t_n) ...) where ?m is an unassigned metavariable whose type is a type class, and (?m t_1 ... t_n) must be synthesized by type class resolution, then we return ?m. Otherwise, we return none */ optional> find_unsynth_metavar(expr const & e) { if (!has_meta_arg(e)) return optional>(); buffer args; expr const & fn = get_app_args(e, args); expr type = m_cienv.infer_type(fn); unsigned i = 0; while (i < args.size()) { type = m_cienv.whnf(type); if (!is_pi(type)) return optional>(); expr const & arg = args[i]; if (binding_info(type).is_inst_implicit() && is_meta(arg)) { expr const & m = get_app_fn(arg); if (is_mvar(m)) { expr m_type = instantiate_uvars_mvars(infer_metavar(m)); if (!has_expr_metavar_relaxed(m_type)) { return some(mk_pair(m, m_type)); } } } type = instantiate(binding_body(type), arg); i++; } return optional>(); } bool mk_instance(expr const & m, expr const & m_type) { lean_assert(m); if (auto r = m_cienv.mk_nested_instance(m_type)) { m_cienv.update_assignment(m, *r); return true; } else { return false; } } virtual bool on_is_def_eq_failure(expr & e1, expr & e2) { if (is_app(e1) && is_app(e2)) { if (auto p1 = find_unsynth_metavar(e1)) { if (mk_instance(p1->first, p1->second)) { e1 = m_cienv.instantiate_uvars_mvars(e1); return true; } } if (auto p2 = find_unsynth_metavar(e2)) { if (mk_instance(p2->first, p2->second)) { e2 = m_cienv.instantiate_uvars_mvars(e2); return true; } } } return false; } virtual bool ignore_universe_def_eq(level const & l1, level const & l2) const { if (is_meta(l1) || is_meta(l2)) { // The unifier may invoke this module before universe metavariables in the class // have been instantiated. So, we just ignore and assume they will be solved by // the unifier. // See comment at g_subsingleton_hack declaration. if (g_subsingleton_hack && (is_zero(l1) || is_zero(l2))) return false; return true; // we ignore } else { return false; } } virtual bool validate_assignment(expr const & m, buffer const & locals, expr const & v) { // We must check // 1. Any (internal) local constant occurring in v occurs in locals // 2. m does not occur in v bool ok = true; for_each(v, [&](expr const & e, unsigned) { if (!ok) return false; // stop search if (is_tmp_local(e)) { if (std::all_of(locals.begin(), locals.end(), [&](expr const & a) { return mlocal_name(a) != mlocal_name(e); })) { ok = false; // failed 1 return false; } } else if (is_mvar(e)) { if (m == e) { ok = false; // failed 2 return false; } return false; } return true; }); return ok; } }; cienv(bool multiple_instances = false): m_next_local_idx(0), m_next_uvar_idx(0), m_next_mvar_idx(0), m_multiple_instances(multiple_instances) {} bool is_not_reducible(name const & n) const { return m_not_reducible_pred(n); } void clear_cache() { expr_struct_map fresh; fresh.swap(m_cache); if (m_ti_ptr) m_ti_ptr->clear_cache(); } void clear_cache_and_ctx() { m_next_local_idx = 0; m_next_uvar_idx = 0; m_next_mvar_idx = 0; m_ctx = list(); m_local_instances.clear(); clear_cache(); } optional check_cache(expr const & type) const { if (m_multiple_instances) { // We do not cache results when multiple instances have to be generated. return none_expr(); } auto it = m_cache.find(type); if (it != m_cache.end()) return some_expr(it->second); else return none_expr(); } void cache_result(expr const & type, expr const & inst) { if (m_multiple_instances) { // We do not cache results when multiple instances have to be generated. return; } m_cache.insert(mk_pair(type, inst)); } void set_options(options const & o) { m_options = o; if (m_trace_instances) { m_options = m_options.update_if_undef(get_pp_purify_metavars_name(), false); m_options = m_options.update_if_undef(get_pp_implicit_name(), true); } unsigned max_depth = get_class_instance_max_depth(o); bool trans_instances = get_class_trans_instances(o); bool trace_instances = get_class_trace_instances(o); if (m_max_depth != max_depth || m_trans_instances != trans_instances || m_trace_instances != trace_instances) { clear_cache_and_ctx(); } m_max_depth = max_depth; m_trans_instances = trans_instances; m_trace_instances = trace_instances; } void set_env(environment const & env) { // Remark: We can implement the following potential refinement. // If env is a descendant of m_env, and env does not add new global instances, // then we don't need to reset the cache if (!m_env.is_descendant(m_env) || !m_env.is_descendant(env)) { m_env = env; m_not_reducible_pred = mk_not_reducible_pred(m_env); m_ti_ptr = nullptr; clear_cache_and_ctx(); } if (!m_ti_ptr) { m_ti_ptr.reset(new ti(*this)); clear_cache_and_ctx(); } } expr whnf(expr const & e) { return m_ti_ptr->whnf(e); } expr infer_type(expr const & e) { return m_ti_ptr->infer(e); } bool is_def_eq(expr const & e1, expr const & e2) { return m_ti_ptr->is_def_eq(e1, e2); } expr instantiate_uvars_mvars(expr const & e) { return m_ti_ptr->instantiate_uvars_mvars(e); } expr mk_local(expr const & type, binder_info const & bi = binder_info()) { unsigned idx = m_next_local_idx; m_next_local_idx++; name n(*g_prefix, idx); return lean::mk_local(n, n, type, bi); } bool is_internal_local(expr const & e) { if (!is_local(e)) return false; name const & n = mlocal_name(e); return !n.is_atomic() && n.get_prefix() == *g_prefix; } /** \brief If the constant \c e is a class, return its name */ optional constant_is_class(expr const & e) { name const & cls_name = const_name(e); if (lean::is_class(m_env, cls_name)) { return optional(cls_name); } else { return optional(); } } optional is_full_class(expr type) { type = whnf(type); if (is_pi(type)) { return is_full_class(instantiate(binding_body(type), mk_local(binding_domain(type)))); } else { expr f = get_app_fn(type); if (!is_constant(f)) return optional(); return constant_is_class(f); } } /** \brief Partial/Quick test for is_class. Result l_true: \c type is a class, and the name of the class is stored in \c result. l_false: \c type is not a class. l_undef: procedure did not establish whether \c type is a class or not. */ lbool is_quick_class(expr const & type, name & result) { expr const * it = &type; while (true) { switch (it->kind()) { case expr_kind::Var: case expr_kind::Sort: case expr_kind::Local: case expr_kind::Meta: case expr_kind::Lambda: return l_false; case expr_kind::Macro: return l_undef; case expr_kind::Constant: if (auto r = constant_is_class(*it)) { result = *r; return l_true; } else if (is_not_reducible(const_name(*it))) { return l_false; } else { return l_undef; } case expr_kind::App: { expr const & f = get_app_fn(*it); if (is_constant(f)) { if (auto r = constant_is_class(f)) { result = *r; return l_true; } else if (is_not_reducible(const_name(f))) { return l_false; } else { return l_undef; } } else if (is_lambda(f) || is_macro(f)) { return l_undef; } else { return l_false; } } case expr_kind::Pi: it = &binding_body(*it); break; } } } /** \brief Return true iff \c type is a class or Pi that produces a class. */ optional is_class(expr const & type) { name result; switch (is_quick_class(type, result)) { case l_true: return optional(result); case l_false: return optional(); case l_undef: break; } return is_full_class(type); } // Auxiliary method for set_ctx void set_local_instance(unsigned i, name const & cname, expr const & e) { lean_assert(i <= m_local_instances.size()); if (i == m_local_instances.size()) { clear_cache(); m_local_instances.push_back(mk_pair(cname, e)); } else if (e != m_local_instances[i].second) { clear_cache(); m_local_instances[i] = mk_pair(cname, e); } else { // we don't need to reset the cache since this local instance // is equal to the one used in a previous call } } void set_ctx(list const & ctx) { if (is_eqp(m_ctx, ctx)) { // we can keep the cache because the local context // is still pointing to the same object. return; } m_ctx = ctx; unsigned i = 0; for (expr const & e : ctx) { // Remark: we use infer_type(e) instead of mlocal_type because we want to allow // customers (e.g., blast) of this class to store the type of local constants // in a different place. if (auto cname = is_class(infer_type(e))) { set_local_instance(i, *cname, e); i++; } } if (i < m_local_instances.size()) { // new ctx has fewer local instances than previous one m_local_instances.resize(i); clear_cache(); } } void set_pos_info(pos_info_provider const * pip, expr const & pos_ref) { m_pip = pip; if (m_pip) m_pos = m_pip->get_pos_info(pos_ref); } // Create an internal universal metavariable level mk_uvar() { unsigned idx = m_next_uvar_idx; m_next_uvar_idx++; return mk_meta_univ(name(*g_prefix, idx)); } // Return true iff \c l is an internal universe metavariable created by this module. static bool is_uvar(level const & l) { if (!is_meta(l)) return false; name const & n = meta_id(l); return !n.is_atomic() && n.get_prefix() == *g_prefix; } static unsigned uvar_idx(level const & l) { lean_assert(is_uvar(l)); return meta_id(l).get_numeral(); } level const * get_assignment(level const & u) const { return m_state.m_uassignment.find(uvar_idx(u)); } bool is_assigned(level const & u) const { return get_assignment(u) != nullptr; } // Assign \c v to the universe metavariable \c u. void update_assignment(level const & u, level const & v) { m_state.m_uassignment.insert(uvar_idx(u), v); } // Create an internal metavariable. expr mk_mvar(expr const & type) { unsigned idx = m_next_mvar_idx; m_next_mvar_idx++; return mk_metavar(name(*g_prefix, idx), type); } // Return true iff \c e is an internal metavariable created by this module. static bool is_mvar(expr const & e) { if (!is_metavar(e)) return false; name const & n = mlocal_name(e); return !n.is_atomic() && n.get_prefix() == *g_prefix; } static unsigned mvar_idx(expr const & m) { lean_assert(is_mvar(m)); return mlocal_name(m).get_numeral(); } expr const * get_assignment(expr const & m) const { return m_state.m_eassignment.find(mvar_idx(m)); } bool is_assigned(expr const & m) const { return get_assignment(m) != nullptr; } void update_assignment(expr const & m, expr const & v) { m_state.m_eassignment.insert(mvar_idx(m), v); lean_assert(is_assigned(m)); } // Assign \c v to the metavariable \c m. void assign(expr const & m, expr const & v) { lean_assert(!is_assigned(m)); update_assignment(m, v); } io_state_stream diagnostic() { io_state ios(*g_ios); ios.set_options(m_options); return lean::diagnostic(m_env, ios); } void trace(unsigned depth, expr const & mvar, expr const & mvar_type, expr const & r) { lean_assert(m_trace_instances); auto out = diagnostic(); if (!m_displayed_trace_header && m_choices.size() == 1) { if (m_pip) { if (auto fname = m_pip->get_file_name()) { out << fname << ":"; } if (m_pos) out << m_pos->first << ":" << m_pos->second << ":"; } out << " class-instance resolution trace" << endl; m_displayed_trace_header = true; } for (unsigned i = 0; i < depth; i++) out << " "; if (depth > 0) out << "[" << depth << "] "; out << mvar << " : " << instantiate_uvars_mvars(mvar_type) << " := " << r << endl; } // Try to synthesize e.m_mvar using instance inst : inst_type. // trans_inst is true if inst is a transitive instance. bool try_instance(stack_entry const & e, expr const & inst, expr const & inst_type, bool trans_inst) { try { buffer locals; expr const & mvar = e.m_mvar; expr mvar_type = mlocal_type(mvar); while (true) { mvar_type = whnf(mvar_type); if (!is_pi(mvar_type)) break; expr local = mk_local(binding_domain(mvar_type)); locals.push_back(local); mvar_type = instantiate(binding_body(mvar_type), local); } expr type = inst_type; expr r = inst; buffer new_inst_mvars; while (true) { type = whnf(type); if (!is_pi(type)) break; expr new_mvar = mk_mvar(Pi(locals, binding_domain(type))); if (binding_info(type).is_inst_implicit()) { new_inst_mvars.push_back(new_mvar); } expr new_arg = mk_app(new_mvar, locals); r = mk_app(r, new_arg); type = instantiate(binding_body(type), new_arg); } if (m_trace_instances) { trace(e.m_depth, mk_app(mvar, locals), mvar_type, r); } if (!is_def_eq(mvar_type, type)) { return false; } r = Fun(locals, r); if (is_assigned(mvar)) { // Remark: if the metavariable is already assigned, we should check whether // the previous assignment (obtained by solving unification constraints) and the // synthesized one are definitionally equal. We don't do that for performance reasons. // Moreover, the is_def_eq defined here is not complete (e.g., it only unfolds reducible constants). update_assignment(mvar, r); } else { assign(mvar, r); } // copy new_inst_mvars to stack unsigned i = new_inst_mvars.size(); while (i > 0) { --i; m_state.m_stack = cons(stack_entry(new_inst_mvars[i], e.m_depth+1, trans_inst), m_state.m_stack); } return true; } catch (exception &) { return false; } } bool try_instance(stack_entry const & e, name const & inst_name, bool trans_inst) { if (auto decl = m_env.find(inst_name)) { buffer ls_buffer; unsigned num_univ_ps = decl->get_num_univ_params(); for (unsigned i = 0; i < num_univ_ps; i++) ls_buffer.push_back(mk_uvar()); levels ls = to_list(ls_buffer.begin(), ls_buffer.end()); expr inst_cnst = mk_constant(inst_name, ls); expr inst_type = instantiate_type_univ_params(*decl, ls); return try_instance(e, inst_cnst, inst_type, trans_inst); } else { return false; } } list get_local_instances(name const & cname) { buffer selected; for (pair const & p : m_local_instances) { if (p.first == cname) selected.push_back(p.second); } return to_list(selected); } bool is_done() const { return empty(m_state.m_stack); } bool mk_choice_point(expr const & mvar) { lean_assert(is_mvar(mvar)); if (m_choices.size() > m_max_depth) { throw_class_exception("maximum class-instance resolution depth has been reached " "(the limit can be increased by setting option 'class.instance_max_depth') " "(the class-instance resolution trace can be visualized by setting option 'class.trace_instances')", mlocal_type(m_main_mvar)); } bool toplevel_choice = m_choices.empty(); m_choices.push_back(choice()); choice & r = m_choices.back(); expr mvar_type = instantiate_uvars_mvars(mlocal_type(mvar)); if (has_expr_metavar_relaxed(mvar_type)) { // Remark: we use has_expr_metavar_relaxed instead of has_expr_metavar, because // we want to ignore metavariables occurring in the type of local constants occurring in mvar_type. // This can happen when type class resolution is invoked from the unifier. return false; } auto cname = is_class(mvar_type); if (!cname) return false; r.m_local_instances = get_local_instances(*cname); if (m_trans_instances && toplevel_choice) { // we only use transitive instances in the top-level r.m_trans_instances = get_class_derived_trans_instances(m_env, *cname); } r.m_instances = get_class_instances(m_env, *cname); if (empty(r.m_local_instances) && empty(r.m_trans_instances) && empty(r.m_instances)) return false; r.m_state = m_state; return true; } bool process_next_alt_core(stack_entry const & e, list & insts) { while (!empty(insts)) { expr inst = head(insts); insts = tail(insts); expr inst_type = infer_type(inst); bool trans_inst = false; if (try_instance(e, inst, inst_type, trans_inst)) return true; } return false; } bool process_next_alt_core(stack_entry const & e, list & inst_names, bool trans_inst) { while (!empty(inst_names)) { name inst_name = head(inst_names); inst_names = tail(inst_names); if (try_instance(e, inst_name, trans_inst)) return true; } return false; } bool process_next_alt(stack_entry const & e) { lean_assert(!m_choices.empty()); choice & c = m_choices.back(); if (process_next_alt_core(e, c.m_local_instances)) return true; if (!e.m_trans_inst_subproblem) { if (process_next_alt_core(e, c.m_trans_instances, true)) return true; if (process_next_alt_core(e, c.m_instances, false)) return true; } return false; } bool process_next_mvar() { lean_assert(!is_done()); stack_entry e = head(m_state.m_stack); if (!mk_choice_point(e.m_mvar)) return false; m_state.m_stack = tail(m_state.m_stack); return process_next_alt(e); } bool backtrack() { if (m_choices.empty()) return false; while (true) { m_choices.pop_back(); if (m_choices.empty()) return false; m_state = m_choices.back().m_state; stack_entry e = head(m_state.m_stack); m_state.m_stack = tail(m_state.m_stack); if (process_next_alt(e)) return true; } } optional search() { while (!is_done()) { if (!process_next_mvar()) { if (!backtrack()) return none_expr(); } } return some_expr(instantiate_uvars_mvars(m_main_mvar)); } optional next_solution() { if (m_choices.empty()) return none_expr(); m_state = m_choices.back().m_state; stack_entry e = head(m_state.m_stack); m_state.m_stack = tail(m_state.m_stack); if (process_next_alt(e)) return search(); else if (backtrack()) return search(); else return none_expr(); } void init_search(expr const & type) { m_state = state(); m_main_mvar = mk_mvar(type); m_state.m_stack = cons(stack_entry(m_main_mvar, 0), m_state.m_stack); m_choices.clear(); } optional ensure_no_meta(optional r) { while (true) { if (!r) return none_expr(); if (!has_expr_metavar_relaxed(*r)) { cache_result(mlocal_type(m_main_mvar), *r); return r; } r = next_solution(); } } optional mk_instance_core(expr const & type) { if (auto r = check_cache(type)) { if (m_trace_instances) { auto out = diagnostic(); out << "cached instance for " << type << "\n" << *r << "\n"; } return r; } init_search(type); auto r = search(); return ensure_no_meta(r); } optional operator()(environment const & env, options const & o, pos_info_provider const * pip, list const & ctx, expr const & type, expr const & pos_ref) { set_env(env); set_options(o); set_ctx(ctx); set_pos_info(pip, pos_ref); m_displayed_trace_header = false; return mk_instance_core(type); } optional next() { if (!m_multiple_instances) return none_expr(); auto r = next_solution(); return ensure_no_meta(r); } optional mk_nested_instance(expr const & type) { std::vector choices; m_choices.swap(choices); // save choice stack flet save_state(m_state, state()); flet save_main_mvar(m_main_mvar, expr()); auto r = mk_instance_core(type); m_choices.swap(choices); // restore choice stack return r; } }; MK_THREAD_LOCAL_GET_DEF(cienv, get_cienv); static void clear_cache_and_ctx() { get_cienv().clear_cache_and_ctx(); } ci_local_metavar_types_scope::ci_local_metavar_types_scope(ci_local_metavar_types & t): m_old(g_lm_types) { g_lm_types = &t; clear_cache_and_ctx(); } ci_local_metavar_types_scope::~ci_local_metavar_types_scope() { clear_cache_and_ctx(); g_lm_types = m_old; } static optional mk_class_instance(environment const & env, io_state const & ios, list const & ctx, expr const & e, pos_info_provider const * pip, expr const & pos_ref) { flet set_ios(g_ios, const_cast(&ios)); return get_cienv()(env, ios.get_options(), pip, ctx, e, pos_ref); } optional mk_class_instance(environment const & env, io_state const & ios, list const & ctx, expr const & e, pos_info_provider const * pip) { return mk_class_instance(env, ios, ctx, e, pip, e); } optional mk_class_instance(environment const & env, list const & ctx, expr const & e, pos_info_provider const * pip) { return mk_class_instance(env, get_dummy_ios(), ctx, e, pip); } // Auxiliary class for generating a lazy-stream of instances. class class_multi_instance_iterator : public choice_iterator { io_state m_ios; cienv m_cienv; expr m_new_meta; justification m_new_j; optional m_first; public: class_multi_instance_iterator(environment const & env, io_state const & ios, list const & ctx, expr const & e, pos_info_provider const * pip, expr const & pos_ref, expr const & new_meta, justification const & new_j, bool is_strict): choice_iterator(!is_strict), m_ios(ios), m_cienv(true), m_new_meta(new_meta), m_new_j(new_j) { flet set_ios(g_ios, const_cast(&m_ios)); m_first = m_cienv(env, ios.get_options(), pip, ctx, e, pos_ref); } virtual ~class_multi_instance_iterator() {} virtual optional next() { optional r; if (m_first) { r = m_first; m_first = none_expr(); } else { flet set_ios(g_ios, const_cast(&m_ios)); r = m_cienv.next(); } if (r) { constraint c = mk_eq_cnstr(m_new_meta, *r, m_new_j); return optional(constraints(c)); } else { return optional(); } } }; static constraint mk_class_instance_root_cnstr(environment const & env, io_state const & ios, local_context const & _ctx, expr const & m, bool is_strict, bool use_local_instances, pos_info_provider const * pip) { justification j = mk_failed_to_synthesize_jst(env, m); auto choice_fn = [=](expr const & meta, expr const & meta_type, substitution const & s, name_generator &&) { cienv & cenv = get_cienv(); cenv.set_env(env); auto cls_name = cenv.is_class(meta_type); if (!cls_name) { // do nothing, since type is not a class. return lazy_list(constraints()); } bool multiple_insts = try_multiple_instances(env, *cls_name); local_context ctx; if (use_local_instances) ctx = _ctx.instantiate(substitution(s)); pair mj = update_meta(meta, s); expr new_meta = mj.first; justification new_j = mj.second; if (multiple_insts) { return choose(std::shared_ptr(new class_multi_instance_iterator(env, ios, ctx.get_data(), meta_type, pip, meta, new_meta, new_j, is_strict))); } else { if (auto r = mk_class_instance(env, ios, ctx.get_data(), meta_type, pip, meta)) { constraint c = mk_eq_cnstr(new_meta, *r, new_j); return lazy_list(constraints(c)); } else if (is_strict) { return lazy_list(); } else { return lazy_list(constraints()); } } }; bool owner = false; delay_factor factor; return mk_choice_cnstr(m, choice_fn, factor, owner, j); } /** \brief Create a metavariable, and attach choice constraint for generating solutions using class-instances */ pair mk_class_instance_elaborator( environment const & env, io_state const & ios, local_context const & ctx, name const & prefix, optional const & suffix, bool use_local_instances, bool is_strict, optional const & type, tag g, pos_info_provider const * pip) { name_generator ngen(prefix); expr m = ctx.mk_meta(ngen, suffix, type, g); constraint c = mk_class_instance_root_cnstr(env, ios, ctx, m, is_strict, use_local_instances, pip); return mk_pair(m, c); } optional mk_class_instance(environment const & env, io_state const & ios, local_context const & ctx, expr const & type, bool use_local_instances) { if (use_local_instances) return mk_class_instance(env, ios, ctx.get_data(), type, nullptr); else return mk_class_instance(env, ios, list(), type, nullptr); } optional mk_class_instance(environment const & env, local_context const & ctx, expr const & type) { return mk_class_instance(env, ctx.get_data(), type, nullptr); } optional mk_hset_instance(type_checker & tc, io_state const & ios, list const & ctx, expr const & type) { level lvl = sort_level(tc.ensure_type(type).first); expr is_hset = tc.whnf(mk_app(mk_constant(get_is_trunc_is_hset_name(), {lvl}), type)).first; return mk_class_instance(tc.env(), ios, ctx, is_hset); } optional mk_subsingleton_instance(type_checker & tc, io_state const & ios, list const & ctx, expr const & type) { flet set(g_subsingleton_hack, true); level lvl = sort_level(tc.ensure_type(type).first); expr subsingleton; if (is_standard(tc.env())) subsingleton = mk_app(mk_constant(get_subsingleton_name(), {lvl}), type); else subsingleton = tc.whnf(mk_app(mk_constant(get_is_trunc_is_hprop_name(), {lvl}), type)).first; return mk_class_instance(tc.env(), ios, ctx, subsingleton); } void initialize_class_instance_resolution() { g_prefix = new name(name::mk_internal_unique_name()); g_class_trace_instances = new name{"class", "trace_instances"}; g_class_instance_max_depth = new name{"class", "instance_max_depth"}; g_class_trans_instances = new name{"class", "trans_instances"}; register_bool_option(*g_class_trace_instances, LEAN_DEFAULT_CLASS_TRACE_INSTANCES, "(class) display messages showing the class-instances resolution execution trace"); register_unsigned_option(*g_class_instance_max_depth, LEAN_DEFAULT_CLASS_INSTANCE_MAX_DEPTH, "(class) max allowed depth in class-instance resolution"); register_bool_option(*g_class_trans_instances, LEAN_DEFAULT_CLASS_TRANS_INSTANCES, "(class) use automatically derived instances from the transitive closure of " "the structure instance graph"); g_lm_types = new default_ci_local_metavar_types(); } void finalize_class_instance_resolution() { delete g_lm_types; delete g_prefix; delete g_class_trace_instances; delete g_class_instance_max_depth; delete g_class_trans_instances; } }