/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: algebra.relation Author: Jeremy Avigad General properties of relations, and classes for equivalence relations and congruences. -/ namespace relation /- properties of binary relations -/ section variables {T : Type} (R : T → T → Type) definition reflexive : Type := ∀x, R x x definition symmetric : Type := ∀⦃x y⦄, R x y → R y x definition transitive : Type := ∀⦃x y z⦄, R x y → R y z → R x z end /- classes for equivalence relations -/ structure is_reflexive [class] {T : Type} (R : T → T → Type) := (refl : reflexive R) structure is_symmetric [class] {T : Type} (R : T → T → Type) := (symm : symmetric R) structure is_transitive [class] {T : Type} (R : T → T → Type) := (trans : transitive R) structure is_equivalence [class] {T : Type} (R : T → T → Type) extends is_reflexive R, is_symmetric R, is_transitive R -- partial equivalence relation structure is_PER {T : Type} (R : T → T → Type) extends is_symmetric R, is_transitive R -- Generic notation. For example, is_refl R is the reflexivity of R, if that can be -- inferred by type class inference section variables {T : Type} (R : T → T → Type) definition rel_refl [C : is_reflexive R] := is_reflexive.refl R definition rel_symm [C : is_symmetric R] := is_symmetric.symm R definition rel_trans [C : is_transitive R] := is_transitive.trans R end /- classes for unary and binary congruences with respect to arbitrary relations -/ structure is_congruence [class] {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop) (f : T1 → T2) := (congr : ∀{x y}, R1 x y → R2 (f x) (f y)) structure is_congruence2 [class] {T1 : Type} (R1 : T1 → T1 → Prop) {T2 : Type} (R2 : T2 → T2 → Prop) {T3 : Type} (R3 : T3 → T3 → Prop) (f : T1 → T2 → T3) := (congr2 : ∀{x1 y1 : T1} {x2 y2 : T2}, R1 x1 y1 → R2 x2 y2 → R3 (f x1 x2) (f y1 y2)) namespace is_congruence -- makes the type class explicit definition app {T1 : Type} {R1 : T1 → T1 → Prop} {T2 : Type} {R2 : T2 → T2 → Prop} {f : T1 → T2} (C : is_congruence R1 R2 f) ⦃x y : T1⦄ : R1 x y → R2 (f x) (f y) := is_congruence.rec (λu, u) C x y definition app2 {T1 : Type} {R1 : T1 → T1 → Prop} {T2 : Type} {R2 : T2 → T2 → Prop} {T3 : Type} {R3 : T3 → T3 → Prop} {f : T1 → T2 → T3} (C : is_congruence2 R1 R2 R3 f) ⦃x1 y1 : T1⦄ ⦃x2 y2 : T2⦄ : R1 x1 y1 → R2 x2 y2 → R3 (f x1 x2) (f y1 y2) := is_congruence2.rec (λu, u) C x1 y1 x2 y2 /- tools to build instances -/ theorem compose {T2 : Type} {R2 : T2 → T2 → Prop} {T3 : Type} {R3 : T3 → T3 → Prop} {g : T2 → T3} (C2 : is_congruence R2 R3 g) ⦃T1 : Type⦄ {R1 : T1 → T1 → Prop} {f : T1 → T2} [C1 : is_congruence R1 R2 f] : is_congruence R1 R3 (λx, g (f x)) := is_congruence.mk (λx1 x2 H, app C2 (app C1 H)) theorem compose21 {T2 : Type} {R2 : T2 → T2 → Prop} {T3 : Type} {R3 : T3 → T3 → Prop} {T4 : Type} {R4 : T4 → T4 → Prop} {g : T2 → T3 → T4} (C3 : is_congruence2 R2 R3 R4 g) ⦃T1 : Type⦄ {R1 : T1 → T1 → Prop} {f1 : T1 → T2} [C1 : is_congruence R1 R2 f1] {f2 : T1 → T3} [C2 : is_congruence R1 R3 f2] : is_congruence R1 R4 (λx, g (f1 x) (f2 x)) := is_congruence.mk (λx1 x2 H, app2 C3 (app C1 H) (app C2 H)) theorem const {T2 : Type} (R2 : T2 → T2 → Prop) (H : relation.reflexive R2) ⦃T1 : Type⦄ (R1 : T1 → T1 → Prop) (c : T2) : is_congruence R1 R2 (λu : T1, c) := is_congruence.mk (λx y H1, H c) end is_congruence theorem congruence_const [instance] {T2 : Type} (R2 : T2 → T2 → Prop) [C : is_reflexive R2] ⦃T1 : Type⦄ (R1 : T1 → T1 → Prop) (c : T2) : is_congruence R1 R2 (λu : T1, c) := is_congruence.const R2 (is_reflexive.refl R2) R1 c theorem congruence_trivial [instance] {T : Type} (R : T → T → Prop) : is_congruence R R (λu, u) := is_congruence.mk (λx y H, H) /- relations that can be coerced to functions / implications-/ structure mp_like [class] (R : Type → Type → Type) := (app : Π{a b : Type}, R a b → (a → b)) definition rel_mp (R : Type → Type → Type) [C : mp_like R] {a b : Type} (H : R a b) := mp_like.app H end relation