--- Copyright (c) 2014 Floris van Doorn. All rights reserved. --- Released under Apache 2.0 license as described in the file LICENSE. --- Author: Floris van Doorn -- data.nat.sub -- ============ -- -- Subtraction on the natural numbers, as well as min, max, and distance. import data.nat.order import tools.fake_simplifier using nat eq_ops tactic using helper_tactics using fake_simplifier namespace nat -- subtraction -- ----------- definition sub (n m : ℕ) : nat := nat_rec n (fun m x, pred x) m infixl `-` := sub theorem sub_zero_right {n : ℕ} : n - 0 = n theorem sub_succ_right {n m : ℕ} : n - succ m = pred (n - m) opaque_hint (hiding sub) theorem sub_zero_left {n : ℕ} : 0 - n = 0 := induction_on n sub_zero_right (take k : nat, assume IH : 0 - k = 0, calc 0 - succ k = pred (0 - k) : sub_succ_right ... = pred 0 : {IH} ... = 0 : pred_zero) theorem sub_succ_succ {n m : ℕ} : succ n - succ m = n - m := induction_on m (calc succ n - 1 = pred (succ n - 0) : sub_succ_right ... = pred (succ n) : {sub_zero_right} ... = n : pred_succ _ ... = n - 0 : sub_zero_right⁻¹) (take k : nat, assume IH : succ n - succ k = n - k, calc succ n - succ (succ k) = pred (succ n - succ k) : sub_succ_right ... = pred (n - k) : {IH} ... = n - succ k : sub_succ_right⁻¹) theorem sub_self {n : ℕ} : n - n = 0 := induction_on n sub_zero_right (take k IH, trans sub_succ_succ IH) theorem sub_add_add_right {n k m : ℕ} : (n + k) - (m + k) = n - m := induction_on k (calc (n + 0) - (m + 0) = n - (m + 0) : {add_zero_right} ... = n - m : {add_zero_right}) (take l : nat, assume IH : (n + l) - (m + l) = n - m, calc (n + succ l) - (m + succ l) = succ (n + l) - (m + succ l) : {add_succ_right} ... = succ (n + l) - succ (m + l) : {add_succ_right} ... = (n + l) - (m + l) : sub_succ_succ ... = n - m : IH) theorem sub_add_add_left {k n m : ℕ} : (k + n) - (k + m) = n - m := add_comm ▸ add_comm ▸ sub_add_add_right theorem sub_add_left {n m : ℕ} : n + m - m = n := induction_on m (add_zero_right⁻¹ ▸ sub_zero_right) (take k : ℕ, assume IH : n + k - k = n, calc n + succ k - succ k = succ (n + k) - succ k : {add_succ_right} ... = n + k - k : sub_succ_succ ... = n : IH) -- TODO: add_sub_inv' theorem sub_add_left2 {n m : ℕ} : n + m - n = m := add_comm ▸ sub_add_left theorem sub_sub {n m k : ℕ} : n - m - k = n - (m + k) := induction_on k (calc n - m - 0 = n - m : sub_zero_right ... = n - (m + 0) : {add_zero_right⁻¹}) (take l : nat, assume IH : n - m - l = n - (m + l), calc n - m - succ l = pred (n - m - l) : sub_succ_right ... = pred (n - (m + l)) : {IH} ... = n - succ (m + l) : sub_succ_right⁻¹ ... = n - (m + succ l) : {add_succ_right⁻¹}) theorem succ_sub_sub {n m k : ℕ} : succ n - m - succ k = n - m - k := calc succ n - m - succ k = succ n - (m + succ k) : sub_sub ... = succ n - succ (m + k) : {add_succ_right} ... = n - (m + k) : sub_succ_succ ... = n - m - k : sub_sub⁻¹ theorem sub_add_right_eq_zero {n m : ℕ} : n - (n + m) = 0 := calc n - (n + m) = n - n - m : sub_sub⁻¹ ... = 0 - m : {sub_self} ... = 0 : sub_zero_left theorem sub_comm {m n k : ℕ} : m - n - k = m - k - n := calc m - n - k = m - (n + k) : sub_sub ... = m - (k + n) : {add_comm} ... = m - k - n : sub_sub⁻¹ theorem sub_one {n : ℕ} : n - 1 = pred n := calc n - 1 = pred (n - 0) : sub_succ_right ... = pred n : {sub_zero_right} theorem succ_sub_one {n : ℕ} : succ n - 1 = n := sub_succ_succ ⬝ sub_zero_right -- add_rewrite sub_add_left -- ### interaction with multiplication theorem mul_pred_left {n m : ℕ} : pred n * m = n * m - m := induction_on n (calc pred 0 * m = 0 * m : {pred_zero} ... = 0 : mul_zero_left ... = 0 - m : sub_zero_left⁻¹ ... = 0 * m - m : {mul_zero_left⁻¹}) (take k : nat, assume IH : pred k * m = k * m - m, calc pred (succ k) * m = k * m : {pred_succ _} ... = k * m + m - m : sub_add_left⁻¹ ... = succ k * m - m : {mul_succ_left⁻¹}) theorem mul_pred_right {n m : ℕ} : n * pred m = n * m - n := calc n * pred m = pred m * n : mul_comm ... = m * n - n : mul_pred_left ... = n * m - n : {mul_comm} theorem mul_sub_distr_right {n m k : ℕ} : (n - m) * k = n * k - m * k := induction_on m (calc (n - 0) * k = n * k : {sub_zero_right} ... = n * k - 0 : sub_zero_right⁻¹ ... = n * k - 0 * k : {mul_zero_left⁻¹}) (take l : nat, assume IH : (n - l) * k = n * k - l * k, calc (n - succ l) * k = pred (n - l) * k : {sub_succ_right} ... = (n - l) * k - k : mul_pred_left ... = n * k - l * k - k : {IH} ... = n * k - (l * k + k) : sub_sub ... = n * k - (succ l * k) : {mul_succ_left⁻¹}) theorem mul_sub_distr_left {n m k : ℕ} : n * (m - k) = n * m - n * k := calc n * (m - k) = (m - k) * n : mul_comm ... = m * n - k * n : mul_sub_distr_right ... = n * m - k * n : {mul_comm} ... = n * m - n * k : {mul_comm} -- ### interaction with inequalities theorem succ_sub {m n : ℕ} : m ≥ n → succ m - n = succ (m - n) := sub_induction n m (take k, assume H : 0 ≤ k, calc succ k - 0 = succ k : sub_zero_right ... = succ (k - 0) : {sub_zero_right⁻¹}) (take k, assume H : succ k ≤ 0, absurd H not_succ_zero_le) (take k l, assume IH : k ≤ l → succ l - k = succ (l - k), take H : succ k ≤ succ l, calc succ (succ l) - succ k = succ l - k : sub_succ_succ ... = succ (l - k) : IH (succ_le_cancel H) ... = succ (succ l - succ k) : {sub_succ_succ⁻¹}) theorem le_imp_sub_eq_zero {n m : ℕ} (H : n ≤ m) : n - m = 0 := obtain (k : ℕ) (Hk : n + k = m), from le_elim H, Hk ▸ sub_add_right_eq_zero theorem add_sub_le {n m : ℕ} : n ≤ m → n + (m - n) = m := sub_induction n m (take k, assume H : 0 ≤ k, calc 0 + (k - 0) = k - 0 : add_zero_left ... = k : sub_zero_right) (take k, assume H : succ k ≤ 0, absurd H not_succ_zero_le) (take k l, assume IH : k ≤ l → k + (l - k) = l, take H : succ k ≤ succ l, calc succ k + (succ l - succ k) = succ k + (l - k) : {sub_succ_succ} ... = succ (k + (l - k)) : add_succ_left ... = succ l : {IH (succ_le_cancel H)}) theorem add_sub_ge_left {n m : ℕ} : n ≥ m → n - m + m = n := add_comm ▸ add_sub_le theorem add_sub_ge {n m : ℕ} (H : n ≥ m) : n + (m - n) = n := calc n + (m - n) = n + 0 : {le_imp_sub_eq_zero H} ... = n : add_zero_right theorem add_sub_le_left {n m : ℕ} : n ≤ m → n - m + m = m := add_comm ▸ add_sub_ge theorem le_add_sub_left {n m : ℕ} : n ≤ n + (m - n) := or_elim le_total (assume H : n ≤ m, (add_sub_le H)⁻¹ ▸ H) (assume H : m ≤ n, (add_sub_ge H)⁻¹ ▸ le_refl) theorem le_add_sub_right {n m : ℕ} : m ≤ n + (m - n) := or_elim le_total (assume H : n ≤ m, (add_sub_le H)⁻¹ ▸ le_refl) (assume H : m ≤ n, (add_sub_ge H)⁻¹ ▸ H) theorem sub_split {P : ℕ → Prop} {n m : ℕ} (H1 : n ≤ m → P 0) (H2 : ∀k, m + k = n -> P k) : P (n - m) := or_elim le_total (assume H3 : n ≤ m, (le_imp_sub_eq_zero H3)⁻¹ ▸ (H1 H3)) (assume H3 : m ≤ n, H2 (n - m) (add_sub_le H3)) theorem sub_le_self {n m : ℕ} : n - m ≤ n := sub_split (assume H : n ≤ m, zero_le) (take k : ℕ, assume H : m + k = n, le_intro (add_comm ▸ H)) theorem le_elim_sub {n m : ℕ} (H : n ≤ m) : ∃k, m - k = n := obtain (k : ℕ) (Hk : n + k = m), from le_elim H, exists_intro k (calc m - k = n + k - k : {Hk⁻¹} ... = n : sub_add_left) theorem add_sub_assoc {m k : ℕ} (H : k ≤ m) (n : ℕ) : n + m - k = n + (m - k) := have l1 : k ≤ m → n + m - k = n + (m - k), from sub_induction k m (take m : ℕ, assume H : 0 ≤ m, calc n + m - 0 = n + m : sub_zero_right ... = n + (m - 0) : {sub_zero_right⁻¹}) (take k : ℕ, assume H : succ k ≤ 0, absurd H not_succ_zero_le) (take k m, assume IH : k ≤ m → n + m - k = n + (m - k), take H : succ k ≤ succ m, calc n + succ m - succ k = succ (n + m) - succ k : {add_succ_right} ... = n + m - k : sub_succ_succ ... = n + (m - k) : IH (succ_le_cancel H) ... = n + (succ m - succ k) : {sub_succ_succ⁻¹}), l1 H theorem sub_eq_zero_imp_le {n m : ℕ} : n - m = 0 → n ≤ m := sub_split (assume H1 : n ≤ m, assume H2 : 0 = 0, H1) (take k : ℕ, assume H1 : m + k = n, assume H2 : k = 0, have H3 : n = m, from add_zero_right ▸ H2 ▸ H1⁻¹, subst H3 le_refl) theorem sub_sub_split {P : ℕ → ℕ → Prop} {n m : ℕ} (H1 : ∀k, n = m + k -> P k 0) (H2 : ∀k, m = n + k → P 0 k) : P (n - m) (m - n) := or_elim le_total (assume H3 : n ≤ m, le_imp_sub_eq_zero H3⁻¹ ▸ (H2 (m - n) (add_sub_le H3⁻¹))) (assume H3 : m ≤ n, le_imp_sub_eq_zero H3⁻¹ ▸ (H1 (n - m) (add_sub_le H3⁻¹))) theorem sub_intro {n m k : ℕ} (H : n + m = k) : k - n = m := have H2 : k - n + n = m + n, from calc k - n + n = k : add_sub_ge_left (le_intro H) ... = n + m : H⁻¹ ... = m + n : add_comm, add_cancel_right H2 theorem sub_lt {x y : ℕ} (xpos : x > 0) (ypos : y > 0) : x - y < x := obtain (x' : ℕ) (xeq : x = succ x'), from pos_imp_eq_succ xpos, obtain (y' : ℕ) (yeq : y = succ y'), from pos_imp_eq_succ ypos, have xsuby_eq : x - y = x' - y', from calc x - y = succ x' - y : {xeq} ... = succ x' - succ y' : {yeq} ... = x' - y' : sub_succ_succ, have H1 : x' - y' ≤ x', from sub_le_self, have H2 : x' < succ x', from self_lt_succ, show x - y < x, from xeq⁻¹ ▸ xsuby_eq⁻¹ ▸ le_lt_trans H1 H2 theorem sub_le_right {n m : ℕ} (H : n ≤ m) (k : nat) : n - k ≤ m - k := obtain (l : ℕ) (Hl : n + l = m), from le_elim H, or_elim le_total (assume H2 : n ≤ k, (le_imp_sub_eq_zero H2)⁻¹ ▸ zero_le) (assume H2 : k ≤ n, have H3 : n - k + l = m - k, from calc n - k + l = l + (n - k) : by simp ... = l + n - k : (add_sub_assoc H2 l)⁻¹ ... = n + l - k : {add_comm} ... = m - k : {Hl}, le_intro H3) theorem sub_le_left {n m : ℕ} (H : n ≤ m) (k : nat) : k - m ≤ k - n := obtain (l : ℕ) (Hl : n + l = m), from le_elim H, sub_split (assume H2 : k ≤ m, zero_le) (take m' : ℕ, assume Hm : m + m' = k, have H3 : n ≤ k, from le_trans H (le_intro Hm), have H4 : m' + l + n = k - n + n, from calc m' + l + n = n + l + m' : by simp ... = m + m' : {Hl} ... = k : Hm ... = k - n + n : (add_sub_ge_left H3)⁻¹, le_intro (add_cancel_right H4)) -- theorem sub_lt_cancel_right {n m k : ℕ) (H : n - k < m - k) : n < m -- := -- _ -- theorem sub_lt_cancel_left {n m k : ℕ) (H : n - m < n - k) : k < m -- := -- _ theorem sub_triangle_inequality {n m k : ℕ} : n - k ≤ (n - m) + (m - k) := sub_split (assume H : n ≤ m, add_zero_left⁻¹ ▸ sub_le_right H k) (take mn : ℕ, assume Hmn : m + mn = n, sub_split (assume H : m ≤ k, have H2 : n - k ≤ n - m, from sub_le_left H n, have H3 : n - k ≤ mn, from sub_intro Hmn ▸ H2, show n - k ≤ mn + 0, from add_zero_right⁻¹ ▸ H3) (take km : ℕ, assume Hkm : k + km = m, have H : k + (mn + km) = n, from calc k + (mn + km) = k + km + mn : by simp ... = m + mn : {Hkm} ... = n : Hmn, have H2 : n - k = mn + km, from sub_intro H, H2 ▸ le_refl)) -- add_rewrite sub_self mul_sub_distr_left mul_sub_distr_right -- Max, min, iteration, and absolute difference -- -------------------------------------------- definition max (n m : ℕ) : ℕ := n + (m - n) definition min (n m : ℕ) : ℕ := m - (m - n) theorem max_le {n m : ℕ} (H : n ≤ m) : n + (m - n) = m := add_sub_le H theorem max_ge {n m : ℕ} (H : n ≥ m) : n + (m - n) = n := add_sub_ge H theorem left_le_max {n m : ℕ} : n ≤ n + (m - n) := le_add_sub_left theorem right_le_max {n m : ℕ} : m ≤ max n m := le_add_sub_right -- ### absolute difference -- This section is still incomplete definition dist (n m : ℕ) := (n - m) + (m - n) theorem dist_comm {n m : ℕ} : dist n m = dist m n := add_comm theorem dist_self {n : ℕ} : dist n n = 0 := calc (n - n) + (n - n) = 0 + 0 : by simp ... = 0 : by simp theorem dist_eq_zero {n m : ℕ} (H : dist n m = 0) : n = m := have H2 : n - m = 0, from add_eq_zero_left H, have H3 : n ≤ m, from sub_eq_zero_imp_le H2, have H4 : m - n = 0, from add_eq_zero_right H, have H5 : m ≤ n, from sub_eq_zero_imp_le H4, le_antisym H3 H5 theorem dist_le {n m : ℕ} (H : n ≤ m) : dist n m = m - n := calc dist n m = 0 + (m - n) : {le_imp_sub_eq_zero H} ... = m - n : add_zero_left theorem dist_ge {n m : ℕ} (H : n ≥ m) : dist n m = n - m := dist_comm ▸ dist_le H theorem dist_zero_right {n : ℕ} : dist n 0 = n := dist_ge zero_le ⬝ sub_zero_right theorem dist_zero_left {n : ℕ} : dist 0 n = n := dist_le zero_le ⬝ sub_zero_right theorem dist_intro {n m k : ℕ} (H : n + m = k) : dist k n = m := calc dist k n = k - n : dist_ge (le_intro H) ... = m : sub_intro H theorem dist_add_right {n k m : ℕ} : dist (n + k) (m + k) = dist n m := calc dist (n + k) (m + k) = ((n+k) - (m+k)) + ((m+k)-(n+k)) : rfl ... = (n - m) + ((m + k) - (n + k)) : {sub_add_add_right} ... = (n - m) + (m - n) : {sub_add_add_right} theorem dist_add_left {k n m : ℕ} : dist (k + n) (k + m) = dist n m := add_comm ▸ add_comm ▸ dist_add_right -- add_rewrite dist_self dist_add_right dist_add_left dist_zero_left dist_zero_right theorem dist_ge_add_right {n m : ℕ} (H : n ≥ m) : dist n m + m = n := calc dist n m + m = n - m + m : {dist_ge H} ... = n : add_sub_ge_left H theorem dist_eq_intro {n m k l : ℕ} (H : n + m = k + l) : dist n k = dist l m := calc dist n k = dist (n + m) (k + m) : dist_add_right⁻¹ ... = dist (k + l) (k + m) : {H} ... = dist l m : dist_add_left theorem dist_sub_move_add {n m : ℕ} (H : n ≥ m) (k : ℕ) : dist (n - m) k = dist n (k + m) := have H2 : n - m + (k + m) = k + n, from calc n - m + (k + m) = n - m + m + k : by simp ... = n + k : {add_sub_ge_left H} ... = k + n : by simp, dist_eq_intro H2 theorem dist_sub_move_add' {k m : ℕ} (H : k ≥ m) (n : ℕ) : dist n (k - m) = dist (n + m) k := (dist_sub_move_add H n ▸ dist_comm) ▸ dist_comm --triangle inequality formulated with dist theorem triangle_inequality {n m k : ℕ} : dist n k ≤ dist n m + dist m k := have H : (n - m) + (m - k) + ((k - m) + (m - n)) = (n - m) + (m - n) + ((m - k) + (k - m)), by simp, H ▸ add_le sub_triangle_inequality sub_triangle_inequality theorem dist_add_le_add_dist {n m k l : ℕ} : dist (n + m) (k + l) ≤ dist n k + dist m l := have H : dist (n + m) (k + m) + dist (k + m) (k + l) = dist n k + dist m l, from dist_add_left ▸ dist_add_right ▸ rfl, H ▸ triangle_inequality --interaction with multiplication theorem dist_mul_left {k n m : ℕ} : dist (k * n) (k * m) = k * dist n m := have H : ∀n m, dist n m = n - m + (m - n), from take n m, rfl, by simp theorem dist_mul_right {n k m : ℕ} : dist (n * k) (m * k) = dist n m * k := have H : ∀n m, dist n m = n - m + (m - n), from take n m, rfl, by simp -- add_rewrite dist_mul_right dist_mul_left dist_comm --needed to prove of_nat a * of_nat b = of_nat (a * b) in int theorem dist_mul_dist {n m k l : ℕ} : dist n m * dist k l = dist (n * k + m * l) (n * l + m * k) := have aux : ∀k l, k ≥ l → dist n m * dist k l = dist (n * k + m * l) (n * l + m * k), from take k l : ℕ, assume H : k ≥ l, have H2 : m * k ≥ m * l, from mul_le_left H m, have H3 : n * l + m * k ≥ m * l, from le_trans H2 le_add_left, calc dist n m * dist k l = dist n m * (k - l) : {dist_ge H} ... = dist (n * (k - l)) (m * (k - l)) : dist_mul_right⁻¹ ... = dist (n * k - n * l) (m * k - m * l) : by simp ... = dist (n * k) (m * k - m * l + n * l) : dist_sub_move_add (mul_le_left H n) _ ... = dist (n * k) (n * l + (m * k - m * l)) : {add_comm} ... = dist (n * k) (n * l + m * k - m * l) : {(add_sub_assoc H2 (n * l))⁻¹} ... = dist (n * k + m * l) (n * l + m * k) : dist_sub_move_add' H3 _, or_elim le_total (assume H : k ≤ l, dist_comm ▸ dist_comm ▸ aux l k H) (assume H : l ≤ k, aux k l H) end nat