import heq variable vec : Nat → Type variable concat {n m : Nat} (v : vec n) (w : vec m) : vec (n + m) infixl 65 ; : concat axiom concat_assoc {n1 n2 n3 : Nat} (v1 : vec n1) (v2 : vec n2) (v3 : vec n3) : (v1 ; v2) ; v3 = cast (congr2 vec (symm (Nat::add_assoc n1 n2 n3))) (v1 ; (v2 ; v3)) variable empty : vec 0 axiom concat_empty {n : Nat} (v : vec n) : v ; empty = cast (congr2 vec (symm (Nat::add_zeror n))) v rewrite_set simple add_rewrite Nat::add_assoc Nat::add_zeror eq_id : simple add_rewrite concat_assoc concat_empty Nat::add_assoc Nat::add_zeror : simple variable f {A : Type} : A → A (* local m = simplifier_monitor(nil, nil, nil, function (s, e, i, k) print("App simplification failure, argument #" .. i) print("Kind: " .. k) print("-----------") end, function (s, e, ceq, ceq_id, i, k) print("Rewrite failure: " .. tostring(e)) end, function (s, e, k) print("Abst failure: " .. tostring(e)) end ) local s = simplifier("simple", options(), m) local t = parse_lean('λ val : Nat, (λ n : Nat, λ v : vec (n + 0), (f v) ; empty) val == (λ n : Nat, λ v : vec (n + 0), v) val') print(t) print("=====>") local t2, pr = s(t) print(t2) -- print(pr) get_environment():type_check(pr) *)