/- Copyright (c) 2015 Floris van Doorn. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Module: hit.circle Authors: Floris van Doorn Declaration of the circle -/ import .sphere open eq suspension bool sphere_index equiv equiv.ops definition circle [reducible] := suspension bool --redefine this as sphere 1 namespace circle definition base1 : circle := !north definition base2 : circle := !south definition seg1 : base1 = base2 := merid tt definition seg2 : base2 = base1 := (merid ff)⁻¹ definition base : circle := base1 definition loop : base = base := seg1 ⬝ seg2 definition rec2 {P : circle → Type} (Pb1 : P base1) (Pb2 : P base2) (Ps1 : seg1 ▹ Pb1 = Pb2) (Ps2 : seg2 ▹ Pb2 = Pb1) (x : circle) : P x := begin fapply (suspension.rec_on x), { exact Pb1}, { exact Pb2}, { intro b, cases b, apply tr_eq_of_eq_inv_tr, exact Ps2⁻¹, exact Ps1}, end definition rec2_on [reducible] {P : circle → Type} (x : circle) (Pb1 : P base1) (Pb2 : P base2) (Ps1 : seg1 ▹ Pb1 = Pb2) (Ps2 : seg2 ▹ Pb2 = Pb1) : P x := circle.rec2 Pb1 Pb2 Ps1 Ps2 x theorem rec2_seg1 {P : circle → Type} (Pb1 : P base1) (Pb2 : P base2) (Ps1 : seg1 ▹ Pb1 = Pb2) (Ps2 : seg2 ▹ Pb2 = Pb1) : apd (rec2 Pb1 Pb2 Ps1 Ps2) seg1 = Ps1 := !rec_merid theorem rec2_seg2 {P : circle → Type} (Pb1 : P base1) (Pb2 : P base2) (Ps1 : seg1 ▹ Pb1 = Pb2) (Ps2 : seg2 ▹ Pb2 = Pb1) : apd (rec2 Pb1 Pb2 Ps1 Ps2) seg2 = Ps2 := sorry definition elim2 {P : Type} (Pb1 Pb2 : P) (Ps1 : Pb1 = Pb2) (Ps2 : Pb2 = Pb1) (x : circle) : P := rec2 Pb1 Pb2 (!tr_constant ⬝ Ps1) (!tr_constant ⬝ Ps2) x definition elim2_on [reducible] {P : Type} (x : circle) (Pb1 Pb2 : P) (Ps1 : Pb1 = Pb2) (Ps2 : Pb2 = Pb1) : P := elim2 Pb1 Pb2 Ps1 Ps2 x theorem elim2_seg1 {P : Type} (Pb1 Pb2 : P) (Ps1 : Pb1 = Pb2) (Ps2 : Pb2 = Pb1) : ap (elim2 Pb1 Pb2 Ps1 Ps2) seg1 = Ps1 := begin apply (@cancel_left _ _ _ _ (tr_constant seg1 (elim2 Pb1 Pb2 Ps1 Ps2 base1))), rewrite [-apd_eq_tr_constant_con_ap,↑elim2,rec2_seg1], end theorem elim2_seg2 {P : Type} (Pb1 Pb2 : P) (Ps1 : Pb1 = Pb2) (Ps2 : Pb2 = Pb1) : ap (elim2 Pb1 Pb2 Ps1 Ps2) seg2 = Ps2 := begin apply (@cancel_left _ _ _ _ (tr_constant seg2 (elim2 Pb1 Pb2 Ps1 Ps2 base2))), rewrite [-apd_eq_tr_constant_con_ap,↑elim2,rec2_seg2], end protected definition rec {P : circle → Type} (Pbase : P base) (Ploop : loop ▹ Pbase = Pbase) (x : circle) : P x := begin fapply (rec2_on x), { exact Pbase}, { exact (transport P seg1 Pbase)}, { apply idp}, { apply eq_tr_of_inv_tr_eq, rewrite -tr_con, apply Ploop}, end example {P : circle → Type} (Pbase : P base) (Ploop : loop ▹ Pbase = Pbase) : rec Pbase Ploop base = Pbase := idp protected definition rec_on [reducible] {P : circle → Type} (x : circle) (Pbase : P base) (Ploop : loop ▹ Pbase = Pbase) : P x := rec Pbase Ploop x theorem rec_loop {P : circle → Type} (Pbase : P base) (Ploop : loop ▹ Pbase = Pbase) : apd (rec Pbase Ploop) loop = Ploop := sorry protected definition elim {P : Type} (Pbase : P) (Ploop : Pbase = Pbase) (x : circle) : P := rec Pbase (tr_constant loop Pbase ⬝ Ploop) x protected definition elim_on [reducible] {P : Type} (x : circle) (Pbase : P) (Ploop : Pbase = Pbase) : P := elim Pbase Ploop x theorem elim_loop {P : Type} (Pbase : P) (Ploop : Pbase = Pbase) : ap (elim Pbase Ploop) loop = Ploop := begin apply (@cancel_left _ _ _ _ (tr_constant loop (elim Pbase Ploop base))), rewrite [-apd_eq_tr_constant_con_ap,↑elim,rec_loop], end protected definition elim_type (Pbase : Type) (Ploop : Pbase ≃ Pbase) (x : circle) : Type := elim Pbase (ua Ploop) x protected definition elim_type_on [reducible] (x : circle) (Pbase : Type) (Ploop : Pbase ≃ Pbase) : Type := elim_type Pbase Ploop x theorem elim_type_loop (Pbase : Type) (Ploop : Pbase ≃ Pbase) : transport (elim_type Pbase Ploop) loop = Ploop := by rewrite [tr_eq_cast_ap_fn,↑elim_type,elim_loop];apply cast_ua_fn end circle