/- Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura, Jeremy Avigad Universal and existential quantifiers. See also init.logic. -/ import .connectives open inhabited nonempty theorem exists_imp_distrib {A : Type} {B : Prop} {P : A → Prop} : ((∃ a : A, P a) → B) ↔ (∀ a : A, P a → B) := iff.intro (λ e x H, e (exists.intro x H)) Exists.rec theorem forall_iff_not_exists {A : Type} {P : A → Prop} : (¬ ∃ a : A, P a) ↔ ∀ a : A, ¬ P a := exists_imp_distrib theorem not_forall_not_of_exists {A : Type} {p : A → Prop} (H : ∃ x, p x) : ¬ ∀ x, ¬ p x := assume H1 : ∀ x, ¬ p x, obtain (w : A) (Hw : p w), from H, absurd Hw (H1 w) theorem not_exists_not_of_forall {A : Type} {p : A → Prop} (H2 : ∀ x, p x) : ¬ ∃ x, ¬p x := assume H1 : ∃ x, ¬ p x, obtain (w : A) (Hw : ¬ p w), from H1, absurd (H2 w) Hw theorem not_forall_of_exists_not {A : Type} {P : A → Prop} (H : ∃ a : A, ¬ P a) : ¬ ∀ a : A, P a := assume H', not_exists_not_of_forall H' H theorem forall_congr {A : Type} {φ ψ : A → Prop} : (∀ x, φ x ↔ ψ x) → ((∀ x, φ x) ↔ (∀ x, ψ x)) := forall_iff_forall theorem exists_congr {A : Type} {φ ψ : A → Prop} : (∀ x, φ x ↔ ψ x) → ((∃ x, φ x) ↔ (∃ x, ψ x)) := exists_iff_exists theorem forall_true_iff_true (A : Type) : (∀ x : A, true) ↔ true := iff_true_intro (λH, trivial) theorem forall_p_iff_p (A : Type) [H : inhabited A] (p : Prop) : (∀ x : A, p) ↔ p := iff.intro (inhabited.destruct H) (λ Hr x, Hr) theorem exists_p_iff_p (A : Type) [H : inhabited A] (p : Prop) : (∃ x : A, p) ↔ p := iff.intro (Exists.rec (λ x Hp, Hp)) (inhabited.destruct H exists.intro) theorem forall_and_distribute {A : Type} (φ ψ : A → Prop) : (∀ x, φ x ∧ ψ x) ↔ (∀ x, φ x) ∧ (∀ x, ψ x) := iff.intro (assume H, and.intro (take x, and.left (H x)) (take x, and.right (H x))) (assume H x, and.intro (and.left H x) (and.right H x)) theorem exists_or_distribute {A : Type} (φ ψ : A → Prop) : (∃ x, φ x ∨ ψ x) ↔ (∃ x, φ x) ∨ (∃ x, ψ x) := iff.intro (Exists.rec (λ x, or.imp !exists.intro !exists.intro)) (or.rec (exists_imp_exists (λ x, or.inl)) (exists_imp_exists (λ x, or.inr))) section open decidable eq.ops variables {A : Type} (P : A → Prop) (a : A) [H : decidable (P a)] include H definition decidable_forall_eq [instance] : decidable (∀ x, x = a → P x) := if pa : P a then inl (λ x heq, eq.substr heq pa) else inr (not.mto (λH, H a rfl) pa) definition decidable_exists_eq [instance] : decidable (∃ x, x = a ∧ P x) := if pa : P a then inl (exists.intro a (and.intro rfl pa)) else inr (Exists.rec (λh, and.rec (λheq, eq.substr heq pa))) end /- exists_unique -/ definition exists_unique {A : Type} (p : A → Prop) := ∃x, p x ∧ ∀y, p y → y = x notation `∃!` binders `, ` r:(scoped P, exists_unique P) := r theorem exists_unique.intro {A : Type} {p : A → Prop} (w : A) (H1 : p w) (H2 : ∀y, p y → y = w) : ∃!x, p x := exists.intro w (and.intro H1 H2) theorem exists_unique.elim {A : Type} {p : A → Prop} {b : Prop} (H2 : ∃!x, p x) (H1 : ∀x, p x → (∀y, p y → y = x) → b) : b := obtain w Hw, from H2, H1 w (and.left Hw) (and.right Hw) theorem exists_unique_of_exists_of_unique {A : Type} {p : A → Prop} (Hex : ∃ x, p x) (Hunique : ∀ y₁ y₂, p y₁ → p y₂ → y₁ = y₂) : ∃! x, p x := obtain x px, from Hex, exists_unique.intro x px (take y, suppose p y, show y = x, from !Hunique this px) theorem exists_of_exists_unique {A : Type} {p : A → Prop} (H : ∃! x, p x) : ∃ x, p x := obtain x Hx, from H, exists.intro x (and.left Hx) theorem unique_of_exists_unique {A : Type} {p : A → Prop} (H : ∃! x, p x) {y₁ y₂ : A} (py₁ : p y₁) (py₂ : p y₂) : y₁ = y₂ := exists_unique.elim H (take x, suppose p x, assume unique : ∀ y, p y → y = x, show y₁ = y₂, from eq.trans (unique _ py₁) (eq.symm (unique _ py₂))) /- definite description -/ section open classical noncomputable definition the {A : Type} {p : A → Prop} (H : ∃! x, p x) : A := some (exists_of_exists_unique H) theorem the_spec {A : Type} {p : A → Prop} (H : ∃! x, p x) : p (the H) := some_spec (exists_of_exists_unique H) theorem eq_the {A : Type} {p : A → Prop} (H : ∃! x, p x) {y : A} (Hy : p y) : y = the H := unique_of_exists_unique H Hy (the_spec H) end /- congruences -/ section variables {A : Type} {p₁ p₂ : A → Prop} (H : ∀ x, p₁ x ↔ p₂ x) theorem congr_forall [congr] : (∀ x, p₁ x) ↔ (∀ x, p₂ x) := forall_congr H theorem congr_exists [congr] : (∃ x, p₁ x) ↔ (∃ x, p₂ x) := exists_congr H include H theorem congr_exists_unique [congr] : (∃! x, p₁ x) ↔ (∃! x, p₂ x) := congr_exists (λx, congr_and (H x) (congr_forall (λy, congr_imp (H y) iff.rfl))) end /- We add this attribute again here so that the simplifier finds it before [congr_forall] -/ attribute congr_imp [congr]