/* Copyright (c) 2014 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Author: Leonardo de Moura */ #include #include #include #include #include #include #include #include "util/hash.h" #include "util/thread.h" #include "util/lean_path.h" #include "util/sstream.h" #include "util/buffer.h" #include "util/interrupt.h" #include "util/name_map.h" #include "kernel/type_checker.h" #include "library/module.h" #include "library/sorry.h" #include "library/kernel_serializer.h" #include "version.h" #ifndef LEAN_ASYNCH_IMPORT_THEOREM #define LEAN_ASYNCH_IMPORT_THEOREM false #endif namespace lean { corrupted_file_exception::corrupted_file_exception(std::string const & fname): exception(sstream() << "failed to import '" << fname << "', file is corrupted") { } typedef pair> writer; struct module_ext : public environment_extension { list m_direct_imports; list m_writers; name_set m_module_defs; }; struct module_ext_reg { unsigned m_ext_id; module_ext_reg() { m_ext_id = environment::register_extension(std::make_shared()); } }; static module_ext_reg * g_ext = nullptr; static module_ext const & get_extension(environment const & env) { return static_cast(env.get_extension(g_ext->m_ext_id)); } static environment update(environment const & env, module_ext const & ext) { return env.update(g_ext->m_ext_id, std::make_shared(ext)); } static char const * g_olean_end_file = "EndFile"; static char const * g_olean_header = "oleanfile"; serializer & operator<<(serializer & s, module_name const & n) { if (n.is_relative()) s << true << *n.get_k() << n.get_name(); else s << false << n.get_name(); return s; } module_name read_module_name(deserializer & d) { if (d.read_bool()) { unsigned k; name n; d >> k >> n; return module_name(k, n); } else { name n; d >> n; return module_name(n); } } void export_module(std::ostream & out, environment const & env) { module_ext const & ext = get_extension(env); buffer imports; buffer writers; to_buffer(ext.m_direct_imports, imports); std::reverse(imports.begin(), imports.end()); for (writer const & w : ext.m_writers) writers.push_back(&w); std::reverse(writers.begin(), writers.end()); std::ostringstream out1(std::ios_base::binary); serializer s1(out1); // store objects for (auto p : writers) { s1 << p->first; p->second(s1); } s1 << g_olean_end_file; serializer s2(out); std::string r = out1.str(); unsigned h = hash(r.size(), [&](unsigned i) { return r[i]; }); s2 << g_olean_header << LEAN_VERSION_MAJOR << LEAN_VERSION_MINOR; s2 << h; // store imported files s2 << imports.size(); for (auto m : imports) s2 << m; // store object code s2.write_unsigned(r.size()); for (unsigned i = 0; i < r.size(); i++) s2.write_char(r[i]); } typedef std::unordered_map object_readers; static object_readers * g_object_readers = nullptr; static object_readers & get_object_readers() { return *g_object_readers; } void register_module_object_reader(std::string const & k, module_object_reader r) { object_readers & readers = get_object_readers(); lean_assert(readers.find(k) == readers.end()); readers[k] = r; } static std::string * g_glvl_key = nullptr; static std::string * g_decl_key = nullptr; static std::string * g_inductive = nullptr; namespace module { environment add(environment const & env, std::string const & k, std::function const & wr) { module_ext ext = get_extension(env); ext.m_writers = cons(writer(k, wr), ext.m_writers); return update(env, ext); } environment add_universe(environment const & env, name const & l) { environment new_env = env.add_universe(l); return add(new_env, *g_glvl_key, [=](serializer & s) { s << l; }); } environment update_module_defs(environment const & env, declaration const & d) { if (d.is_definition() && !d.is_theorem()) { module_ext ext = get_extension(env); ext.m_module_defs.insert(d.get_name()); return update(env, ext); } else { return env; } } environment add(environment const & env, certified_declaration const & d) { environment new_env = env.add(d); declaration _d = d.get_declaration(); new_env = update_module_defs(new_env, _d); return add(new_env, *g_decl_key, [=](serializer & s) { s << _d; }); } environment add(environment const & env, declaration const & d) { environment new_env = env.add(d); new_env = update_module_defs(new_env, d); return add(new_env, *g_decl_key, [=](serializer & s) { s << d; }); } bool is_definition(environment const & env, name const & n) { module_ext const & ext = get_extension(env); return ext.m_module_defs.contains(n); } environment add_inductive(environment env, level_param_names const & level_params, unsigned num_params, list const & decls) { environment new_env = inductive::add_inductive(env, level_params, num_params, decls); return add(new_env, *g_inductive, [=](serializer & s) { s << inductive_decls(level_params, num_params, decls); }); } static void inductive_reader(deserializer & d, module_idx, shared_environment & senv, std::function &, std::function &) { inductive_decls ds = read_inductive_decls(d); senv.update([&](environment const & env) { return inductive::add_inductive(env, std::get<0>(ds), std::get<1>(ds), std::get<2>(ds)); }); } environment add_inductive(environment const & env, name const & ind_name, level_param_names const & level_params, unsigned num_params, expr const & type, list const & intro_rules) { return add_inductive(env, level_params, num_params, to_list(inductive::inductive_decl(ind_name, type, intro_rules))); } } // end of namespace module struct import_modules_fn { typedef std::tuple delayed_update; shared_environment m_senv; unsigned m_num_threads; bool m_keep_proofs; io_state m_ios; mutex m_asynch_mutex; condition_variable m_asynch_cv; std::vector m_asynch_tasks; mutex m_delayed_mutex; std::vector m_delayed_tasks; atomic m_next_module_idx; atomic m_import_counter; // number of modules to be processed atomic m_all_modules_imported; struct module_info { std::string m_fname; atomic m_counter; // number of dependencies to be processed unsigned m_module_idx; std::vector> m_dependents; std::vector m_obj_code; module_info():m_counter(0), m_module_idx(0) {} }; typedef std::shared_ptr module_info_ptr; name_map m_module_info; name_set m_visited; import_modules_fn(environment const & env, unsigned num_threads, bool keep_proofs, io_state const & ios): m_senv(env), m_num_threads(num_threads), m_keep_proofs(keep_proofs), m_ios(ios), m_next_module_idx(1), m_import_counter(0), m_all_modules_imported(false) { if (m_num_threads == 0) m_num_threads = 1; #if !defined(LEAN_MULTI_THREAD) if (m_num_threads > 1) m_num_threads = 1; #endif if (env.trust_lvl() > LEAN_BELIEVER_TRUST_LEVEL) { // it doesn't payoff to use multiple threads if we will not type check anything m_num_threads = 1; } } module_info_ptr load_module_file(std::string const & base, module_name const & mname) { // TODO(Leo): support module_name std::string fname = find_file(base, mname.get_k(), mname.get_name(), {".olean"}); auto it = m_module_info.find(fname); if (it) return *it; if (m_visited.contains(fname)) throw exception(sstream() << "circular dependency detected at '" << fname << "'"); m_visited.insert(fname); std::ifstream in(fname, std::ifstream::binary); if (!in.good()) throw exception(sstream() << "failed to open file '" << fname << "'"); try { deserializer d1(in); std::string header; d1 >> header; if (header != g_olean_header) throw exception(sstream() << "file '" << fname << "' does not seem to be a valid object Lean file, invalid header"); unsigned major, minor, claimed_hash; d1 >> major >> minor >> claimed_hash; // Enforce version? unsigned num_imports = d1.read_unsigned(); buffer imports; for (unsigned i = 0; i < num_imports; i++) imports.push_back(read_module_name(d1)); unsigned code_size = d1.read_unsigned(); std::vector code(code_size); for (unsigned i = 0; i < code_size; i++) code[i] = d1.read_char(); unsigned computed_hash = hash(code_size, [&](unsigned i) { return code[i]; }); if (claimed_hash != computed_hash) throw exception(sstream() << "file '" << fname << "' has been corrupted, checksum mismatch"); module_info_ptr r = std::make_shared(); r->m_fname = fname; r->m_counter = imports.size(); r->m_module_idx = g_null_module_idx; m_import_counter++; std::string new_base = dirname(fname.c_str()); std::swap(r->m_obj_code, code); for (auto i : imports) { auto d = load_module_file(new_base, i); d->m_dependents.push_back(r); } m_module_info.insert(fname, r); r->m_module_idx = m_next_module_idx++; if (imports.empty()) add_import_module_task(r); return r; } catch (corrupted_stream_exception&) { throw corrupted_file_exception(fname); } } void add_asynch_task(asynch_update_fn const & f) { { lock_guard l(m_asynch_mutex); m_asynch_tasks.push_back(f); } m_asynch_cv.notify_one(); } void add_import_module_task(module_info_ptr const & r) { add_asynch_task([=](shared_environment &) { import_module(r); }); } declaration theorem2axiom(declaration const & decl) { lean_assert(decl.is_theorem()); return mk_axiom(decl.get_name(), decl.get_univ_params(), decl.get_type()); } void import_decl(deserializer & d, module_idx midx) { declaration decl = read_declaration(d, midx); lean_assert(!decl.is_definition() || decl.get_module_idx() == midx); environment env = m_senv.env(); if (decl.get_name() == get_sorry_name() && has_sorry(env)) return; if (env.trust_lvl() > LEAN_BELIEVER_TRUST_LEVEL) { if (!m_keep_proofs && decl.is_theorem()) m_senv.add(theorem2axiom(decl)); else m_senv.add(decl); } else if (LEAN_ASYNCH_IMPORT_THEOREM && decl.is_theorem()) { // First, we add the theorem as an axiom, and create an asychronous task for // checking the actual theorem, and replace the axiom with the actual theorem. certified_declaration tmp_c = check(env, theorem2axiom(decl)); m_senv.add(tmp_c); add_asynch_task([=](shared_environment & m_senv) { certified_declaration c = check(env, decl); if (m_keep_proofs) m_senv.replace(c); }); } else { if (!m_keep_proofs && decl.is_theorem()) { // check theorem, but add an axiom check(env, decl); m_senv.add(check(env, theorem2axiom(decl))); } else { certified_declaration c = check(env, decl); m_senv.add(c); } } } void import_universe(deserializer & d) { name const l = read_name(d); m_senv.update([=](environment const & env) { return env.add_universe(l); }); } void import_module(module_info_ptr const & r) { std::string s(r->m_obj_code.data(), r->m_obj_code.size()); std::istringstream in(s, std::ios_base::binary); deserializer d(in); unsigned obj_counter = 0; std::function add_asynch_update([&](asynch_update_fn const & f) { add_asynch_task(f); }); std::function add_delayed_update([&](delayed_update_fn const & f) { lock_guard lk(m_delayed_mutex); m_delayed_tasks.push_back(std::make_tuple(r->m_module_idx, obj_counter, f)); }); while (true) { check_interrupted(); std::string k; d >> k; if (k == g_olean_end_file) { break; } else if (k == *g_decl_key) { import_decl(d, r->m_module_idx); } else if (k == *g_glvl_key) { import_universe(d); } else { object_readers & readers = get_object_readers(); auto it = readers.find(k); if (it == readers.end()) throw exception(sstream() << "file '" << r->m_fname << "' has been corrupted, unknown object"); it->second(d, r->m_module_idx, m_senv, add_asynch_update, add_delayed_update); } obj_counter++; } if (atomic_fetch_sub_explicit(&m_import_counter, 1u, memory_order_release) == 1u) { atomic_thread_fence(memory_order_acquire); m_all_modules_imported = true; m_asynch_cv.notify_all(); } // Module was successfully imported, we should notify descendents. for (module_info_ptr const & d : r->m_dependents) { if (atomic_fetch_sub_explicit(&(d->m_counter), 1u, memory_order_release) == 1u) { atomic_thread_fence(memory_order_acquire); // all d's dependencies have been processed add_import_module_task(d); } } } optional next_task() { while (true) { check_interrupted(); unique_lock lk(m_asynch_mutex); if (!m_asynch_tasks.empty()) { asynch_update_fn r = m_asynch_tasks.back(); m_asynch_tasks.pop_back(); return optional(r); } else if (m_all_modules_imported) { return optional(); } else { m_asynch_cv.wait(lk); } } } void process_asynch_tasks() { if (m_asynch_tasks.empty()) return; std::vector> extra_threads; std::vector> thread_exceptions(m_num_threads - 1); atomic failed_thread_idx(-1); // >= 0 if error for (unsigned i = 0; i < m_num_threads - 1; i++) { extra_threads.push_back(std::unique_ptr(new interruptible_thread([=, &thread_exceptions, &failed_thread_idx]() { try { while (auto t = next_task()) { (*t)(m_senv); } m_asynch_cv.notify_all(); } catch (exception & ex) { thread_exceptions[i].reset(ex.clone()); failed_thread_idx = i; } catch (...) { thread_exceptions[i].reset(new exception("module import thread failed for unknown reasons")); failed_thread_idx = i; } }))); } try { while (auto t = next_task()) { (*t)(m_senv); int idx = failed_thread_idx; if (idx >= 0) thread_exceptions[idx]->rethrow(); } m_asynch_cv.notify_all(); for (auto & th : extra_threads) th->join(); } catch (...) { for (auto & th : extra_threads) th->request_interrupt(); for (auto & th : extra_threads) th->join(); throw; } } environment process_delayed_tasks() { environment env = m_senv.env(); // Sort delayed tasks using lexicographical order on (module-idx, obj-idx). // obj-idx is the object's position in the module. std::sort(m_delayed_tasks.begin(), m_delayed_tasks.end(), [](delayed_update const & u1, delayed_update const & u2) { if (std::get<0>(u1) != std::get<0>(u2)) return std::get<0>(u1) < std::get<0>(u2); else return std::get<1>(u1) < std::get<1>(u2); }); for (auto const & d : m_delayed_tasks) { env = std::get<2>(d)(env, m_ios); } return env; } void store_direct_imports(unsigned num_modules, module_name const * modules) { m_senv.update([&](environment const & env) -> environment { module_ext ext = get_extension(env); for (unsigned i = 0; i < num_modules; i++) ext.m_direct_imports = cons(modules[i], ext.m_direct_imports); return update(env, ext); }); } environment operator()(std::string const & base, unsigned num_modules, module_name const * modules) { store_direct_imports(num_modules, modules); for (unsigned i = 0; i < num_modules; i++) load_module_file(base, modules[i]); process_asynch_tasks(); return process_delayed_tasks(); } }; environment import_modules(environment const & env, std::string const & base, unsigned num_modules, module_name const * modules, unsigned num_threads, bool keep_proofs, io_state const & ios) { return import_modules_fn(env, num_threads, keep_proofs, ios)(base, num_modules, modules); } environment import_module(environment const & env, std::string const & base, module_name const & module, unsigned num_threads, bool keep_proofs, io_state const & ios) { return import_modules(env, base, 1, &module, num_threads, keep_proofs, ios); } void initialize_module() { g_ext = new module_ext_reg(); g_object_readers = new object_readers(); g_glvl_key = new std::string("glvl"); g_decl_key = new std::string("decl"); g_inductive = new std::string("ind"); register_module_object_reader(*g_inductive, module::inductive_reader); } void finalize_module() { delete g_inductive; delete g_decl_key; delete g_glvl_key; delete g_object_readers; delete g_ext; } }