import logic tools.tactic open tactic theorem tst1 (a b : Prop) : a → b → b := by intros Ha; intros Hb; apply Hb theorem tst2 (a b : Prop) : a → b → a ∧ b := by intros Ha; intros Hb; apply and.intro; apply Hb; apply Ha theorem tst3 (a b : Prop) : a → b → a ∧ b := begin intros Ha, intros Hb, apply and.intro, apply Hb, apply Ha end theorem tst4 (a b : Prop) : a → b → a ∧ b := begin intros Ha Hb, apply and.intro, apply Hb, apply Ha end theorem tst5 (a b : Prop) : a → b → a ∧ b := begin intros, apply and.intro, eassumption, eassumption end