Definition double {A : Type} (f : A -> A) : A -> A := fun x, f (f x). Definition big {A : Type} (f : A -> A) : A -> A := (double (double (double (double (double (double (double f))))))). (** -- Tactic for trying to prove goal using Reflexivity, Congruence and available assumptions local congr_tac = REPEAT(ORELSE(apply_tac("Refl"), apply_tac("Congr"), assumption_tac)) -- Create an eager tactic that only tries to prove goal after unfolding everything eager_tac = THEN(-- unfold homogeneous equality TRY(unfold_tac("eq")), -- keep unfolding defintions above and beta-reducing REPEAT(unfold_tac .. REPEAT(beta_tac)), congr_tac) -- The 'lazy' version tries first to prove without unfolding anything lazy_tac = ORELSE(THEN(TRY(unfold_tac("eq")), congr_tac, now_tac), eager_tac) **) Theorem T1 (a b : Int) (f : Int -> Int) (H : a = b) : (big f a) = (big f b). apply eager_tac. done. Theorem T2 (a b : Int) (f : Int -> Int) (H : a = b) : (big f a) = (big f b). apply lazy_tac. done. Theorem T3 (a b : Int) (f : Int -> Int) (H : a = b) : (big f a) = ((double (double (double (double (double (double (double f))))))) b). apply lazy_tac. done.