-- Copyright (c) 2014 Floris van Doorn. All rights reserved. -- Released under Apache 2.0 license as described in the file LICENSE. -- Author: Floris van Doorn -- Theory int -- ========== import ..nat.basic ..nat.order ..nat.sub ..prod ..quotient ..quotient tools.tactic struc.relation import struc.binary -- TODO: show decidability of le and remove this import logic.classes.decidable import logic.axioms.classical import logic.axioms.prop_decidable import tools.fake_simplifier namespace int using nat (hiding case) using quotient using subtype using prod using relation using decidable using binary using fake_simplifier -- ## The defining equivalence relation on ℕ × ℕ abbreviation rel (a b : ℕ × ℕ) : Prop := pr1 a + pr2 b = pr2 a + pr1 b theorem rel_comp (n m k l : ℕ) : (rel (pair n m) (pair k l)) ↔ (n + l = m + k) := have H : (pr1 (pair n m) + pr2 (pair k l) = pr2 (pair n m) + pr1 (pair k l)) ↔ (n + l = m + k), by simp, H -- add_rewrite rel_comp --local theorem rel_refl (a : ℕ × ℕ) : rel a a := add_comm (pr1 a) (pr2 a) theorem rel_symm {a b : ℕ × ℕ} (H : rel a b) : rel b a := calc pr1 b + pr2 a = pr2 a + pr1 b : add_comm _ _ ... = pr1 a + pr2 b : symm H ... = pr2 b + pr1 a : add_comm _ _ theorem rel_trans {a b c : ℕ × ℕ} (H1 : rel a b) (H2 : rel b c) : rel a c := have H3 : pr1 a + pr2 c + pr2 b = pr2 a + pr1 c + pr2 b, from calc pr1 a + pr2 c + pr2 b = pr1 a + pr2 b + pr2 c : by simp ... = pr2 a + pr1 b + pr2 c : {H1} ... = pr2 a + (pr1 b + pr2 c) : by simp ... = pr2 a + (pr2 b + pr1 c) : {H2} ... = pr2 a + pr1 c + pr2 b : by simp, show pr1 a + pr2 c = pr2 a + pr1 c, from add_cancel_right H3 theorem rel_equiv : is_equivalence rel := is_equivalence_mk (is_reflexive_mk rel_refl) (is_symmetric_mk @rel_symm) (is_transitive_mk @rel_trans) theorem rel_flip {a b : ℕ × ℕ} (H : rel a b) : rel (flip a) (flip b) := calc pr1 (flip a) + pr2 (flip b) = pr2 a + pr1 b : by simp ... = pr1 a + pr2 b : symm H ... = pr2 (flip a) + pr1 (flip b) : by simp -- ## The canonical representative of each equivalence class definition proj (a : ℕ × ℕ) : ℕ × ℕ := if pr1 a ≥ pr2 a then pair (pr1 a - pr2 a) 0 else pair 0 (pr2 a - pr1 a) theorem proj_ge {a : ℕ × ℕ} (H : pr1 a ≥ pr2 a) : proj a = pair (pr1 a - pr2 a) 0 := if_pos H _ _ theorem proj_lt {a : ℕ × ℕ} (H : pr1 a < pr2 a) : proj a = pair 0 (pr2 a - pr1 a) := have H2 : ¬ pr1 a ≥ pr2 a, from lt_imp_not_ge H, if_neg H2 _ _ theorem proj_le {a : ℕ × ℕ} (H : pr1 a ≤ pr2 a) : proj a = pair 0 (pr2 a - pr1 a) := or_elim (le_or_gt (pr2 a) (pr1 a)) (assume H2 : pr2 a ≤ pr1 a, have H3 : pr1 a = pr2 a, from le_antisym H H2, calc proj a = pair (pr1 a - pr2 a) 0 : proj_ge H2 ... = pair (pr1 a - pr2 a) (pr1 a - pr1 a) : {symm (sub_self (pr1 a))} ... = pair (pr2 a - pr2 a) (pr2 a - pr1 a) : {H3} ... = pair 0 (pr2 a - pr1 a) : {sub_self (pr2 a)}) (assume H2 : pr1 a < pr2 a, proj_lt H2) theorem proj_ge_pr1 {a : ℕ × ℕ} (H : pr1 a ≥ pr2 a) : pr1 (proj a) = pr1 a - pr2 a := calc pr1 (proj a) = pr1 (pair (pr1 a - pr2 a) 0) : {proj_ge H} ... = pr1 a - pr2 a : pr1_pair (pr1 a - pr2 a) 0 theorem proj_ge_pr2 {a : ℕ × ℕ} (H : pr1 a ≥ pr2 a) : pr2 (proj a) = 0 := calc pr2 (proj a) = pr2 (pair (pr1 a - pr2 a) 0) : {proj_ge H} ... = 0 : pr2_pair (pr1 a - pr2 a) 0 theorem proj_le_pr1 {a : ℕ × ℕ} (H : pr1 a ≤ pr2 a) : pr1 (proj a) = 0 := calc pr1 (proj a) = pr1 (pair 0 (pr2 a - pr1 a)) : {proj_le H} ... = 0 : pr1_pair 0 (pr2 a - pr1 a) theorem proj_le_pr2 {a : ℕ × ℕ} (H : pr1 a ≤ pr2 a) : pr2 (proj a) = pr2 a - pr1 a := calc pr2 (proj a) = pr2 (pair 0 (pr2 a - pr1 a)) : {proj_le H} ... = pr2 a - pr1 a : pr2_pair 0 (pr2 a - pr1 a) theorem proj_flip (a : ℕ × ℕ) : proj (flip a) = flip (proj a) := have special : ∀a, pr2 a ≤ pr1 a → proj (flip a) = flip (proj a), from take a, assume H : pr2 a ≤ pr1 a, have H2 : pr1 (flip a) ≤ pr2 (flip a), from P_flip H, have H3 : pr1 (proj (flip a)) = pr1 (flip (proj a)), from calc pr1 (proj (flip a)) = 0 : proj_le_pr1 H2 ... = pr2 (proj a) : symm (proj_ge_pr2 H) ... = pr1 (flip (proj a)) : symm (flip_pr1 (proj a)), have H4 : pr2 (proj (flip a)) = pr2 (flip (proj a)), from calc pr2 (proj (flip a)) = pr2 (flip a) - pr1 (flip a) : proj_le_pr2 H2 ... = pr1 a - pr1 (flip a) : {flip_pr2 a} ... = pr1 a - pr2 a : {flip_pr1 a} ... = pr1 (proj a) : symm (proj_ge_pr1 H) ... = pr2 (flip (proj a)) : symm (flip_pr2 (proj a)), prod_eq H3 H4, or_elim (le_total (pr2 a) (pr1 a)) (assume H : pr2 a ≤ pr1 a, special a H) (assume H : pr1 a ≤ pr2 a, have H2 : pr2 (flip a) ≤ pr1 (flip a), from P_flip H, calc proj (flip a) = flip (flip (proj (flip a))) : symm (flip_flip (proj (flip a))) ... = flip (proj (flip (flip a))) : {symm (special (flip a) H2)} ... = flip (proj a) : {flip_flip a}) theorem proj_rel (a : ℕ × ℕ) : rel a (proj a) := or_elim (le_total (pr2 a) (pr1 a)) (assume H : pr2 a ≤ pr1 a, calc pr1 a + pr2 (proj a) = pr1 a + 0 : {proj_ge_pr2 H} ... = pr1 a : add_zero_right (pr1 a) ... = pr2 a + (pr1 a - pr2 a) : symm (add_sub_le H) ... = pr2 a + pr1 (proj a) : {symm (proj_ge_pr1 H)}) (assume H : pr1 a ≤ pr2 a, calc pr1 a + pr2 (proj a) = pr1 a + (pr2 a - pr1 a) : {proj_le_pr2 H} ... = pr2 a : add_sub_le H ... = pr2 a + 0 : symm (add_zero_right (pr2 a)) ... = pr2 a + pr1 (proj a) : {symm (proj_le_pr1 H)}) theorem proj_congr {a b : ℕ × ℕ} (H : rel a b) : proj a = proj b := have special : ∀a b, pr2 a ≤ pr1 a → rel a b → proj a = proj b, from take a b, assume H2 : pr2 a ≤ pr1 a, assume H : rel a b, have H3 : pr1 a + pr2 b ≤ pr2 a + pr1 b, from subst H (le_refl (pr1 a + pr2 b)), have H4 : pr2 b ≤ pr1 b, from add_le_inv H3 H2, have H5 : pr1 (proj a) = pr1 (proj b), from calc pr1 (proj a) = pr1 a - pr2 a : proj_ge_pr1 H2 ... = pr1 a + pr2 b - pr2 b - pr2 a : {symm (sub_add_left (pr1 a) (pr2 b))} ... = pr2 a + pr1 b - pr2 b - pr2 a : {H} ... = pr2 a + pr1 b - pr2 a - pr2 b : {sub_comm _ _ _} ... = pr1 b - pr2 b : {sub_add_left2 (pr2 a) (pr1 b)} ... = pr1 (proj b) : symm (proj_ge_pr1 H4), have H6 : pr2 (proj a) = pr2 (proj b), from calc pr2 (proj a) = 0 : proj_ge_pr2 H2 ... = pr2 (proj b) : {symm (proj_ge_pr2 H4)}, prod_eq H5 H6, or_elim (le_total (pr2 a) (pr1 a)) (assume H2 : pr2 a ≤ pr1 a, special a b H2 H) (assume H2 : pr1 a ≤ pr2 a, have H3 : pr2 (flip a) ≤ pr1 (flip a), from P_flip H2, have H4 : proj (flip a) = proj (flip b), from special (flip a) (flip b) H3 (rel_flip H), have H5 : flip (proj a) = flip (proj b), from subst (proj_flip a) (subst (proj_flip b) H4), show proj a = proj b, from flip_inj H5) theorem proj_inj {a b : ℕ × ℕ} (H : proj a = proj b) : rel a b := representative_map_equiv_inj rel_equiv proj_rel @proj_congr H theorem proj_zero_or (a : ℕ × ℕ) : pr1 (proj a) = 0 ∨ pr2 (proj a) = 0 := or_elim (le_total (pr2 a) (pr1 a)) (assume H : pr2 a ≤ pr1 a, or_intro_right _ (proj_ge_pr2 H)) (assume H : pr1 a ≤ pr2 a, or_intro_left _ (proj_le_pr1 H)) theorem proj_idempotent (a : ℕ × ℕ) : proj (proj a) = proj a := representative_map_idempotent_equiv proj_rel @proj_congr a -- ## Definition of ℤ and basic theorems and definitions definition int := image proj notation `ℤ`:max := int definition psub : ℕ × ℕ → ℤ := fun_image proj definition rep : ℤ → ℕ × ℕ := subtype.elt_of theorem quotient : is_quotient rel psub rep := representative_map_to_quotient_equiv rel_equiv proj_rel @proj_congr theorem psub_rep (a : ℤ) : psub (rep a) = a := abs_rep quotient a theorem destruct (a : ℤ) : ∃n m : ℕ, a = psub (pair n m) := exists_intro (pr1 (rep a)) (exists_intro (pr2 (rep a)) (calc a = psub (rep a) : symm (psub_rep a) ... = psub (pair (pr1 (rep a)) (pr2 (rep a))) : {symm (prod_ext (rep a))})) definition of_nat (n : ℕ) : ℤ := psub (pair n 0) opaque_hint (hiding int) coercion of_nat -- TODO: why doesn't the coercion work? theorem eq_zero_intro (n : ℕ) : psub (pair n n) = 0 := have H : rel (pair n n) (pair 0 0), by simp, eq_abs quotient H -- TODO: this is not a good name -- we want to use abs for the function from int to int. -- Rename to int.to_nat? -- ## absolute value definition to_nat : ℤ → ℕ := rec_constant quotient (fun v, dist (pr1 v) (pr2 v)) -- TODO: set binding strength: is this right? notation `|`:40 x:40 `|` := to_nat x -- TODO: delete -- prod.destruct should be enough ---move to other library or remove -- add_rewrite pair_tproj_eq -- theorem pair_translate {A B : Type} (P : A → B → A × B → Prop) -- : (∀v, P (pr1 v) (pr2 v) v) ↔ (∀a b, P a b (pair a b)) := -- iff_intro -- (assume H, take a b, subst (by simp) (H (pair a b))) -- (assume H, take v, subst (by simp) (H (pr1 v) (pr2 v))) theorem abs_comp (n m : ℕ) : (to_nat (psub (pair n m))) = dist n m := have H : ∀v w : ℕ × ℕ, rel v w → dist (pr1 v) (pr2 v) = dist (pr1 w) (pr2 w), from take v w H, dist_eq_intro H, have H2 : ∀v : ℕ × ℕ, (to_nat (psub v)) = dist (pr1 v) (pr2 v), from take v, (comp_constant quotient H (rel_refl v)), (by simp) ◂ H2 (pair n m) -- add_rewrite abs_comp --local --the following theorem includes abs_zero theorem to_nat_of_nat (n : ℕ) : to_nat (of_nat n) = n := calc (to_nat (psub (pair n 0))) = dist n 0 : by simp ... = n : by simp theorem of_nat_inj {n m : ℕ} (H : of_nat n = of_nat m) : n = m := calc n = to_nat (of_nat n) : symm (to_nat_of_nat n) ... = to_nat (of_nat m) : {H} ... = m : to_nat_of_nat m theorem abs_eq_zero {a : ℤ} (H : (to_nat a) = 0) : a = 0 := obtain (xa ya : ℕ) (Ha : a = psub (pair xa ya)), from destruct a, have H2 : dist xa ya = 0, from calc dist xa ya = (to_nat (psub (pair xa ya))) : by simp ... = (to_nat a) : {symm Ha} ... = 0 : H, have H3 : xa = ya, from dist_eq_zero H2, calc a = psub (pair xa ya) : Ha ... = psub (pair ya ya) : {H3} ... = 0 : eq_zero_intro ya -- add_rewrite abs_of_nat -- ## neg definition neg : ℤ → ℤ := quotient_map quotient flip -- TODO: is this good? prefix `-`:80 := neg theorem neg_comp (n m : ℕ) : -psub (pair n m) = psub (pair m n) := have H : ∀a, -psub a = psub (flip a), from take a, comp_quotient_map quotient @rel_flip (rel_refl _), calc -psub (pair n m) = psub (flip (pair n m)) : H (pair n m) ... = psub (pair m n) : by simp -- add_rewrite neg_comp --local theorem neg_zero : -0 = 0 := calc -psub (pair 0 0) = psub (pair 0 0) : neg_comp 0 0 theorem neg_neg (a : ℤ) : -(-a) = a := obtain (xa ya : ℕ) (Ha : a = psub (pair xa ya)), from destruct a, by simp -- add_rewrite neg_neg neg_zero theorem neg_inj {a b : ℤ} (H : -a = -b) : a = b := (by simp) ◂ congr_arg neg H theorem neg_move {a b : ℤ} (H : -a = b) : -b = a := subst H (neg_neg a) theorem abs_neg (a : ℤ) : (to_nat (-a)) = (to_nat a) := obtain (xa ya : ℕ) (Ha : a = psub (pair xa ya)), from destruct a, by simp theorem pos_eq_neg {n m : ℕ} (H : n = -m) : n = 0 ∧ m = 0 := have H2 : ∀n : ℕ, n = psub (pair n 0), from take n : ℕ, refl (n), have H3 : psub (pair n 0) = psub (pair 0 m), from (by simp) ◂ H, have H4 : rel (pair n 0) (pair 0 m), from R_intro_refl quotient rel_refl H3, have H5 : n + m = 0, from calc n + m = pr1 (pair n 0) + pr2 (pair 0 m) : by simp ... = pr2 (pair n 0) + pr1 (pair 0 m) : H4 ... = 0 : by simp, add_eq_zero H5 -- add_rewrite abs_neg ---reverse equalities opaque_hint (exposing int) theorem cases (a : ℤ) : (∃n : ℕ, a = of_nat n) ∨ (∃n : ℕ, a = - n) := have Hrep : proj (rep a) = rep a, from @idempotent_image_fix _ proj proj_idempotent a, or_imp_or (or_swap (proj_zero_or (rep a))) (assume H : pr2 (proj (rep a)) = 0, have H2 : pr2 (rep a) = 0, from subst Hrep H, exists_intro (pr1 (rep a)) (calc a = psub (rep a) : symm (psub_rep a) ... = psub (pair (pr1 (rep a)) (pr2 (rep a))) : {symm (prod_ext (rep a))} ... = psub (pair (pr1 (rep a)) 0) : {H2} ... = of_nat (pr1 (rep a)) : refl _)) (assume H : pr1 (proj (rep a)) = 0, have H2 : pr1 (rep a) = 0, from subst Hrep H, exists_intro (pr2 (rep a)) (calc a = psub (rep a) : symm (psub_rep a) ... = psub (pair (pr1 (rep a)) (pr2 (rep a))) : {symm (prod_ext (rep a))} ... = psub (pair 0 (pr2 (rep a))) : {H2} ... = -psub (pair (pr2 (rep a)) 0) : by simp ... = -of_nat (pr2 (rep a)) : refl _)) opaque_hint (hiding int) ---rename to by_cases in Lean 0.2 (for now using this to avoid name clash) theorem int_by_cases {P : ℤ → Prop} (a : ℤ) (H1 : ∀n : ℕ, P (of_nat n)) (H2 : ∀n : ℕ, P (-n)) : P a := or_elim (cases a) (assume H, obtain (n : ℕ) (H3 : a = n), from H, subst (symm H3) (H1 n)) (assume H, obtain (n : ℕ) (H3 : a = -n), from H, subst (symm H3) (H2 n)) ---reverse equalities, rename theorem cases_succ (a : ℤ) : (∃n : ℕ, a = of_nat n) ∨ (∃n : ℕ, a = - of_nat (succ n)) := or_elim (cases a) (assume H : (∃n : ℕ, a = of_nat n), or_intro_left _ H) (assume H, obtain (n : ℕ) (H2 : a = -of_nat n), from H, discriminate (assume H3 : n = 0, have H4 : a = of_nat 0, from calc a = - of_nat n : H2 ... = - of_nat 0 : {H3} ... = of_nat 0 : neg_zero, or_intro_left _ (exists_intro 0 H4)) (take k : ℕ, assume H3 : n = succ k, have H4 : a = - of_nat (succ k), from subst H3 H2, or_intro_right _ (exists_intro k H4))) theorem int_by_cases_succ {P : ℤ → Prop} (a : ℤ) (H1 : ∀n : ℕ, P (of_nat n)) (H2 : ∀n : ℕ, P (-of_nat (succ n))) : P a := or_elim (cases_succ a) (assume H, obtain (n : ℕ) (H3 : a = of_nat n), from H, subst (symm H3) (H1 n)) (assume H, obtain (n : ℕ) (H3 : a = -of_nat (succ n)), from H, subst (symm H3) (H2 n)) theorem of_nat_eq_neg_of_nat {n m : ℕ} (H : n = - m) : n = 0 ∧ m = 0 := have H2 : n = psub (pair 0 m), from calc n = -m : H ... = -psub (pair m 0) : refl (-m) ... = psub (pair 0 m) : by simp, have H3 : rel (pair n 0) (pair 0 m), from R_intro_refl quotient rel_refl H2, have H4 : n + m = 0, from calc n + m = pr1 (pair n 0) + pr2 (pair 0 m) : by simp ... = pr2 (pair n 0) + pr1 (pair 0 m) : H3 ... = 0 : by simp, add_eq_zero H4 --some of these had to be transparent for theorem cases opaque_hint (hiding psub proj) -- ## add theorem rel_add {a a' b b' : ℕ × ℕ} (Ha : rel a a') (Hb : rel b b') : rel (map_pair2 add a b) (map_pair2 add a' b') := calc pr1 (map_pair2 add a b) + pr2 (map_pair2 add a' b') = pr1 a + pr2 a' + (pr1 b + pr2 b') : by simp ... = pr2 a + pr1 a' + (pr1 b + pr2 b') : {Ha} ... = pr2 a + pr1 a' + (pr2 b + pr1 b') : {Hb} ... = pr2 (map_pair2 add a b) + pr1 (map_pair2 add a' b') : by simp definition add : ℤ → ℤ → ℤ := quotient_map_binary quotient (map_pair2 nat.add) infixl `+` := int.add theorem add_comp (n m k l : ℕ) : psub (pair n m) + psub (pair k l) = psub (pair (n + k) (m + l)) := have H : ∀a b, psub a + psub b = psub (map_pair2 nat.add a b), from comp_quotient_map_binary_refl rel_refl quotient @rel_add, trans (H (pair n m) (pair k l)) (by simp) -- add_rewrite add_comp --local theorem add_comm (a b : ℤ) : a + b = b + a := obtain (xa ya : ℕ) (Ha : a = psub (pair xa ya)), from destruct a, obtain (xb yb : ℕ) (Hb : b = psub (pair xb yb)), from destruct b, by simp theorem add_assoc (a b c : ℤ) : a + b + c = a + (b + c) := obtain (xa ya : ℕ) (Ha : a = psub (pair xa ya)), from destruct a, obtain (xb yb : ℕ) (Hb : b = psub (pair xb yb)), from destruct b, obtain (xc yc : ℕ) (Hc : c = psub (pair xc yc)), from destruct c, by simp theorem add_left_comm (a b c : ℤ) : a + (b + c) = b + (a + c) := left_comm add_comm add_assoc a b c theorem add_right_comm (a b c : ℤ) : a + b + c = a + c + b := right_comm add_comm add_assoc a b c -- ### interaction of add with other functions and constants theorem add_zero_right (a : ℤ) : a + 0 = a := obtain (xa ya : ℕ) (Ha : a = psub (pair xa ya)), from destruct a, have H0 : 0 = psub (pair 0 0), from refl 0, by simp theorem add_zero_left (a : ℤ) : 0 + a = a := subst (add_comm a 0) (add_zero_right a) theorem add_inverse_right (a : ℤ) : a + -a = 0 := have H : ∀n, psub (pair n n) = 0, from eq_zero_intro, obtain (xa ya : ℕ) (Ha : a = psub (pair xa ya)), from destruct a, by simp theorem add_inverse_left (a : ℤ) : -a + a = 0 := subst (add_comm a (-a)) (add_inverse_right a) theorem neg_add_distr (a b : ℤ) : -(a + b) = -a + -b := obtain (xa ya : ℕ) (Ha : a = psub (pair xa ya)), from destruct a, obtain (xb yb : ℕ) (Hb : b = psub (pair xb yb)), from destruct b, by simp theorem triangle_inequality (a b : ℤ) : (to_nat (a + b)) ≤ (to_nat a) + (to_nat b) := --note: ≤ is nat::≤ obtain (xa ya : ℕ) (Ha : a = psub (pair xa ya)), from destruct a, obtain (xb yb : ℕ) (Hb : b = psub (pair xb yb)), from destruct b, have H : dist (xa + xb) (ya + yb) ≤ dist xa ya + dist xb yb, from dist_add_le_add_dist xa xb ya yb, by simp -- TODO: add this to eq -- notation A `=` B `:` C := @eq C A B -- TODO: note, we have to add #nat to get the right interpretation theorem add_of_nat (n m : nat) : of_nat n + of_nat m = #nat n + m := -- this is of_nat (n + m) have H : ∀n : ℕ, n = psub (pair n 0), from take n : ℕ, refl n, by simp -- add_rewrite add_of_nat theorem of_nat_succ (n : ℕ) : of_nat (succ n) = of_nat n + 1 := by simp -- ## sub definition sub (a b : ℤ) : ℤ := a + -b infixl `-`:65 := int.sub theorem sub_def (a b : ℤ) : a - b = a + -b := refl (a - b) theorem add_neg_right (a b : ℤ) : a + -b = a - b := refl (a - b) theorem add_neg_left (a b : ℤ) : -a + b = b - a := add_comm (-a) b -- opaque_hint (hiding int.sub) theorem sub_neg_right (a b : ℤ) : a - (-b) = a + b := subst (neg_neg b) (refl (a - (-b))) theorem sub_neg_neg (a b : ℤ) : -a - (-b) = b - a := subst (neg_neg b) (add_comm (-a) (-(-b))) theorem sub_self (a : ℤ) : a - a = 0 := add_inverse_right a theorem sub_zero_right (a : ℤ) : a - 0 = a := subst (symm neg_zero) (add_zero_right a) theorem sub_zero_left (a : ℤ) : 0 - a = -a := add_zero_left (-a) theorem neg_sub (a b : ℤ) : -(a - b) = -a + b := calc -(a - b) = -a + -(-b) : neg_add_distr a (-b) ... = -a + b : {neg_neg b} theorem neg_sub_flip (a b : ℤ) : -(a - b) = b - a := calc -(a - b) = -a + b : neg_sub a b ... = b - a : add_comm (-a) b theorem sub_sub_assoc (a b c : ℤ) : a - b - c = a - (b + c) := calc a - b - c = a + (-b + -c) : add_assoc a (-b) (-c) ... = a + -(b + c) : {symm (neg_add_distr b c)} theorem sub_add_assoc (a b c : ℤ) : a - b + c = a - (b - c) := calc a - b + c = a + (-b + c) : add_assoc a (-b) c ... = a + -(b - c) : {symm (neg_sub b c)} theorem add_sub_assoc (a b c : ℤ) : a + b - c = a + (b - c) := add_assoc a b (-c) theorem add_sub_inverse (a b : ℤ) : a + b - b = a := calc a + b - b = a + (b - b) : add_assoc a b (-b) ... = a + 0 : {sub_self b} ... = a : add_zero_right a theorem add_sub_inverse2 (a b : ℤ) : a + b - a = b := subst (add_comm b a) (add_sub_inverse b a) theorem sub_add_inverse (a b : ℤ) : a - b + b = a := subst (add_right_comm a b (-b)) (add_sub_inverse a b) -- add_rewrite add_zero_left add_zero_right -- add_rewrite add_comm add_assoc add_left_comm -- add_rewrite sub_def add_inverse_right add_inverse_left -- add_rewrite neg_add_distr ---- add_rewrite sub_sub_assoc sub_add_assoc add_sub_assoc ---- add_rewrite add_neg_right add_neg_left ---- add_rewrite sub_self -- ### inversion theorems for add and sub -- a + a = 0 -> a = 0 -- a = -a -> a = 0 theorem add_cancel_right {a b c : ℤ} (H : a + c = b + c) : a = b := calc a = a + c - c : symm (add_sub_inverse a c) ... = b + c - c : {H} ... = b : add_sub_inverse b c theorem add_cancel_left {a b c : ℤ} (H : a + b = a + c) : b = c := add_cancel_right (subst (subst H (add_comm a b)) (add_comm a c)) theorem add_eq_zero_right {a b : ℤ} (H : a + b = 0) : -a = b := have H2 : a + -a = a + b, from subst (symm (add_inverse_right a)) (symm H), show -a = b, from add_cancel_left H2 theorem add_eq_zero_left {a b : ℤ} (H : a + b = 0) : -b = a := neg_move (add_eq_zero_right H) theorem add_eq_self {a b : ℤ} (H : a + b = a) : b = 0 := add_cancel_left (trans H (symm (add_zero_right a))) theorem sub_inj_left {a b c : ℤ} (H : a - b = a - c) : b = c := neg_inj (add_cancel_left H) theorem sub_inj_right {a b c : ℤ} (H : a - b = c - b) : a = c := add_cancel_right H theorem sub_eq_zero {a b : ℤ} (H : a - b = 0) : a = b := neg_inj (add_eq_zero_right H) theorem add_imp_sub_right {a b c : ℤ} (H : a + b = c) : c - b = a := have H2 : c - b + b = a + b, from trans (sub_add_inverse c b) (symm H), add_cancel_right H2 theorem add_imp_sub_left {a b c : ℤ} (H : a + b = c) : c - a = b := add_imp_sub_right (subst (add_comm a b) H) theorem sub_imp_add {a b c : ℤ} (H : a - b = c) : c + b = a := subst (neg_neg b) (add_imp_sub_right H) theorem sub_imp_sub {a b c : ℤ} (H : a - b = c) : a - c = b := have H2 : c + b = a, from sub_imp_add H, add_imp_sub_left H2 theorem sub_add_add_right (a b c : ℤ) : a + c - (b + c) = a - b := calc a + c - (b + c) = a + (c - (b + c)) : add_sub_assoc a c (b + c) ... = a + (c - b - c) : {symm (sub_sub_assoc c b c)} ... = a + -b : {add_sub_inverse2 c (-b)} theorem sub_add_add_left (a b c : ℤ) : c + a - (c + b) = a - b := subst (add_comm b c) (subst (add_comm a c) (sub_add_add_right a b c)) -- TODO: fix this theorem dist_def (n m : ℕ) : dist n m = (to_nat (of_nat n - m)) := have H [fact] : of_nat n - m = psub (pair n m), from calc psub (pair n 0) + -psub (pair m 0) = psub (pair (n + 0) (0 + m)) : by simp ... = psub (pair n m) : by simp, calc dist n m = (to_nat (psub (pair n m))) : by simp ... = (to_nat (of_nat n - m)) : sorry -- {symm H} -- ## mul -- TODO: remove this when order changes theorem rel_mul_prep {xa ya xb yb xn yn xm ym : ℕ} (H1 : xa + yb = ya + xb) (H2 : xn + ym = yn + xm) : xa * xn + ya * yn + (xb * ym + yb * xm) = xa * yn + ya * xn + (xb * xm + yb * ym) := have H3 : xa * xn + ya * yn + (xb * ym + yb * xm) + (yb * xn + xb * yn + (xb * xn + yb * yn)) = xa * yn + ya * xn + (xb * xm + yb * ym) + (yb * xn + xb * yn + (xb * xn + yb * yn)), from calc xa * xn + ya * yn + (xb * ym + yb * xm) + (yb * xn + xb * yn + (xb * xn + yb * yn)) = xa * xn + yb * xn + (ya * yn + xb * yn) + (xb * xn + xb * ym + (yb * yn + yb * xm)) : by simp ... = (xa + yb) * xn + (ya + xb) * yn + (xb * (xn + ym) + yb * (yn + xm)) : by simp ... = (ya + xb) * xn + (xa + yb) * yn + (xb * (yn + xm) + yb * (xn + ym)) : by simp ... = ya * xn + xb * xn + (xa * yn + yb * yn) + (xb * yn + xb * xm + (yb*xn + yb*ym)) : by simp ... = xa * yn + ya * xn + (xb * xm + yb * ym) + (yb * xn + xb * yn + (xb * xn + yb * yn)) : by simp, nat.add_cancel_right H3 theorem rel_mul {u u' v v' : ℕ × ℕ} (H1 : rel u u') (H2 : rel v v') : rel (pair (pr1 u * pr1 v + pr2 u * pr2 v) (pr1 u * pr2 v + pr2 u * pr1 v)) (pair (pr1 u' * pr1 v' + pr2 u' * pr2 v') (pr1 u' * pr2 v' + pr2 u' * pr1 v')) := calc pr1 (pair (pr1 u * pr1 v + pr2 u * pr2 v) (pr1 u * pr2 v + pr2 u * pr1 v)) + pr2 (pair (pr1 u' * pr1 v' + pr2 u' * pr2 v') (pr1 u' * pr2 v' + pr2 u' * pr1 v')) = (pr1 u * pr1 v + pr2 u * pr2 v) + (pr1 u' * pr2 v' + pr2 u' * pr1 v') : by simp ... = (pr1 u * pr2 v + pr2 u * pr1 v) + (pr1 u' * pr1 v' + pr2 u' * pr2 v') : rel_mul_prep H1 H2 ... = pr2 (pair (pr1 u * pr1 v + pr2 u * pr2 v) (pr1 u * pr2 v + pr2 u * pr1 v)) + pr1 (pair (pr1 u' * pr1 v' + pr2 u' * pr2 v') (pr1 u' * pr2 v' + pr2 u' * pr1 v')) : by simp definition mul : ℤ → ℤ → ℤ := quotient_map_binary quotient (fun u v : ℕ × ℕ, pair (pr1 u * pr1 v + pr2 u * pr2 v) (pr1 u * pr2 v + pr2 u * pr1 v)) infixl `*` := int.mul theorem mul_comp (n m k l : ℕ) : psub (pair n m) * psub (pair k l) = psub (pair (n * k + m * l) (n * l + m * k)) := have H : ∀u v, psub u * psub v = psub (pair (pr1 u * pr1 v + pr2 u * pr2 v) (pr1 u * pr2 v + pr2 u * pr1 v)), from comp_quotient_map_binary_refl rel_refl quotient @rel_mul, trans (H (pair n m) (pair k l)) (by simp) -- add_rewrite mul_comp theorem mul_comm (a b : ℤ) : a * b = b * a := obtain (xa ya : ℕ) (Ha : a = psub (pair xa ya)), from destruct a, obtain (xb yb : ℕ) (Hb : b = psub (pair xb yb)), from destruct b, by simp theorem mul_assoc (a b c : ℤ) : (a * b) * c = a * (b * c) := obtain (xa ya : ℕ) (Ha : a = psub (pair xa ya)), from destruct a, obtain (xb yb : ℕ) (Hb : b = psub (pair xb yb)), from destruct b, obtain (xc yc : ℕ) (Hc : c = psub (pair xc yc)), from destruct c, by simp theorem mul_left_comm : ∀a b c : ℤ, a * (b * c) = b * (a * c) := left_comm mul_comm mul_assoc theorem mul_right_comm : ∀a b c : ℤ, a * b * c = a * c * b := right_comm mul_comm mul_assoc -- ### interaction with other objects theorem mul_zero_right (a : ℤ) : a * 0 = 0 := obtain (xa ya : ℕ) (Ha : a = psub (pair xa ya)), from destruct a, have H0 : 0 = psub (pair 0 0), from refl 0, by simp theorem mul_zero_left (a : ℤ) : 0 * a = 0 := subst (mul_comm a 0) (mul_zero_right a) theorem mul_one_right (a : ℤ) : a * 1 = a := obtain (xa ya : ℕ) (Ha : a = psub (pair xa ya)), from destruct a, have H1 : 1 = psub (pair 1 0), from refl 1, by simp theorem mul_one_left (a : ℤ) : 1 * a = a := subst (mul_comm a 1) (mul_one_right a) theorem mul_neg_right (a b : ℤ) : a * -b = -(a * b) := obtain (xa ya : ℕ) (Ha : a = psub (pair xa ya)), from destruct a, obtain (xb yb : ℕ) (Hb : b = psub (pair xb yb)), from destruct b, by simp theorem mul_neg_left (a b : ℤ) : -a * b = -(a * b) := subst (mul_comm b a) (subst (mul_comm b (-a)) (mul_neg_right b a)) -- add_rewrite mul_neg_right mul_neg_left theorem mul_neg_neg (a b : ℤ) : -a * -b = a * b := by simp theorem mul_distr_right (a b c : ℤ) : (a + b) * c = a * c + b * c := obtain (xa ya : ℕ) (Ha : a = psub (pair xa ya)), from destruct a, obtain (xb yb : ℕ) (Hb : b = psub (pair xb yb)), from destruct b, obtain (xc yc : ℕ) (Hc : c = psub (pair xc yc)), from destruct c, by simp theorem mul_distr_left (a b c : ℤ) : a * (b + c) = a * b + a * c := calc a * (b + c) = (b + c) * a : mul_comm a (b + c) ... = b * a + c * a : mul_distr_right b c a ... = a * b + c * a : {mul_comm b a} ... = a * b + a * c : {mul_comm c a} theorem mul_sub_distr_right (a b c : ℤ) : (a - b) * c = a * c - b * c := calc (a + -b) * c = a * c + -b * c : mul_distr_right a (-b) c ... = a * c + - (b * c) : {mul_neg_left b c} theorem mul_sub_distr_left (a b c : ℤ) : a * (b - c) = a * b - a * c := calc a * (b + -c) = a * b + a * -c : mul_distr_left a b (-c) ... = a * b + - (a * c) : {mul_neg_right a c} theorem mul_of_nat (n m : ℕ) : of_nat n * of_nat m = n * m := have H : ∀n : ℕ, n = psub (pair n 0), from take n : ℕ, refl n, by simp theorem mul_to_nat (a b : ℤ) : (to_nat (a * b)) = #nat (to_nat a) * (to_nat b) := obtain (xa ya : ℕ) (Ha : a = psub (pair xa ya)), from destruct a, obtain (xb yb : ℕ) (Hb : b = psub (pair xb yb)), from destruct b, have H : dist xa ya * dist xb yb = dist (xa * xb + ya * yb) (xa * yb + ya * xb), from dist_mul_dist xa ya xb yb, by simp -- add_rewrite mul_zero_left mul_zero_right mul_one_right mul_one_left -- add_rewrite mul_comm mul_assoc mul_left_comm -- add_rewrite mul_distr_right mul_distr_left mul_of_nat --mul_sub_distr_left mul_sub_distr_right -- ---------- inversion theorem mul_eq_zero {a b : ℤ} (H : a * b = 0) : a = 0 ∨ b = 0 := have H2 : (to_nat a) * (to_nat b) = 0, from calc (to_nat a) * (to_nat b) = (to_nat (a * b)) : symm (mul_to_nat a b) ... = (to_nat 0) : {H} ... = 0 : to_nat_of_nat 0, have H3 : (to_nat a) = 0 ∨ (to_nat b) = 0, from mul_eq_zero H2, or_imp_or H3 (assume H : (to_nat a) = 0, abs_eq_zero H) (assume H : (to_nat b) = 0, abs_eq_zero H) theorem mul_cancel_left_or {a b c : ℤ} (H : a * b = a * c) : a = 0 ∨ b = c := have H2 : a * (b - c) = 0, by simp, have H3 : a = 0 ∨ b - c = 0, from mul_eq_zero H2, or_imp_or_right H3 (assume H4 : b - c = 0, sub_eq_zero H4) theorem mul_cancel_left {a b c : ℤ} (H1 : a ≠ 0) (H2 : a * b = a * c) : b = c := resolve_right (mul_cancel_left_or H2) H1 theorem mul_cancel_right_or {a b c : ℤ} (H : b * a = c * a) : a = 0 ∨ b = c := mul_cancel_left_or (subst (subst H (mul_comm b a)) (mul_comm c a)) theorem mul_cancel_right {a b c : ℤ} (H1 : c ≠ 0) (H2 : a * c = b * c) : a = b := resolve_right (mul_cancel_right_or H2) H1 theorem mul_ne_zero {a b : ℤ} (Ha : a ≠ 0) (Hb : b ≠ 0) : a * b ≠ 0 := not_intro (assume H : a * b = 0, or_elim (mul_eq_zero H) (assume H2 : a = 0, absurd H2 Ha) (assume H2 : b = 0, absurd H2 Hb)) theorem mul_ne_zero_left {a b : ℤ} (H : a * b ≠ 0) : a ≠ 0 := not_intro (assume H2 : a = 0, have H3 : a * b = 0, by simp, absurd H3 H) theorem mul_ne_zero_right {a b : ℤ} (H : a * b ≠ 0) : b ≠ 0 := mul_ne_zero_left (subst (mul_comm a b) H) -- ## le definition le (a b : ℤ) : Prop := ∃n : ℕ, a + n = b infix `<=` := int.le infix `≤` := int.le -- definition le : ℤ → ℤ → Prop := rec_binary quotient (fun a b, pr1 a + pr2 b ≤ pr2 a + pr1 b) -- theorem le_comp_alt (u v : ℕ × ℕ) : (psub u ≤ psub v) ↔ (pr1 u + pr2 v ≤ pr2 u + pr1 v) -- := -- comp_binary_refl quotient rel_refl -- (take u u' v v' : ℕ × ℕ, -- assume Hu : rel u u', -- assume Hv : rel v v',) -- u v -- theorem le_intro {a b : ℤ} {n : ℕ} (H : a + of_nat n = b) : a ≤ b -- := -- have lemma : ∀u v, rel (map_pair2 nat::add u (pair n 0)) v → pr1 u + pr2 v + n = pr2 u + pr1 v, from -- take u v, -- assume H : rel (map_pair2 nat::add u (pair n 0)) v, -- calc -- pr1 u + pr2 v + n = pr1 u + n + pr2 v : nat::add_right_comm (pr1 u) (pr2 v) n -- ... = pr1 (map_pair2 nat::add u (pair n 0)) + pr2 v : by simp -- ... = pr2 (map_pair2 nat::add u (pair n 0)) + pr1 v : H -- ... = pr2 u + 0 + pr1 v : by simp -- ... = pr2 u + pr1 v : {nat::add_zero_right (pr2 u)}, -- have H2 : theorem le_intro {a b : ℤ} {n : ℕ} (H : a + n = b) : a ≤ b := exists_intro n H theorem le_elim {a b : ℤ} (H : a ≤ b) : ∃n : ℕ, a + n = b := H -- ### partial order theorem le_refl (a : ℤ) : a ≤ a := le_intro (add_zero_right a) theorem le_of_nat (n m : ℕ) : (of_nat n ≤ of_nat m) ↔ (n ≤ m) := iff_intro (assume H : of_nat n ≤ of_nat m, obtain (k : ℕ) (Hk : of_nat n + of_nat k = of_nat m), from le_elim H, have H2 : n + k = m, from of_nat_inj (trans (symm (add_of_nat n k)) Hk), nat.le_intro H2) (assume H : n ≤ m, obtain (k : ℕ) (Hk : n + k = m), from nat.le_elim H, have H2 : of_nat n + of_nat k = of_nat m, from subst Hk (add_of_nat n k), le_intro H2) theorem le_trans {a b c : ℤ} (H1 : a ≤ b) (H2 : b ≤ c) : a ≤ c := obtain (n : ℕ) (Hn : a + n = b), from le_elim H1, obtain (m : ℕ) (Hm : b + m = c), from le_elim H2, have H3 : a + of_nat (n + m) = c, from calc a + of_nat (n + m) = a + (of_nat n + m) : {symm (add_of_nat n m)} ... = a + n + m : symm (add_assoc a n m) ... = b + m : {Hn} ... = c : Hm, le_intro H3 theorem le_antisym {a b : ℤ} (H1 : a ≤ b) (H2 : b ≤ a) : a = b := obtain (n : ℕ) (Hn : a + n = b), from le_elim H1, obtain (m : ℕ) (Hm : b + m = a), from le_elim H2, have H3 : a + of_nat (n + m) = a + 0, from calc a + of_nat (n + m) = a + (of_nat n + m) : {symm (add_of_nat n m)} ... = a + n + m : symm (add_assoc a n m) ... = b + m : {Hn} ... = a : Hm ... = a + 0 : symm (add_zero_right a), have H4 : of_nat (n + m) = of_nat 0, from add_cancel_left H3, have H5 : n + m = 0, from of_nat_inj H4, have H6 : n = 0, from nat.add_eq_zero_left H5, show a = b, from calc a = a + of_nat 0 : symm (add_zero_right a) ... = a + n : {symm H6} ... = b : Hn -- ### interaction with add theorem le_add_of_nat_right (a : ℤ) (n : ℕ) : a ≤ a + n := le_intro (refl (a + n)) theorem le_add_of_nat_left (a : ℤ) (n : ℕ) : a ≤ n + a := le_intro (add_comm a n) theorem add_le_left {a b : ℤ} (H : a ≤ b) (c : ℤ) : c + a ≤ c + b := obtain (n : ℕ) (Hn : a + n = b), from le_elim H, have H2 : c + a + n = c + b, from calc c + a + n = c + (a + n) : add_assoc c a n ... = c + b : {Hn}, le_intro H2 theorem add_le_right {a b : ℤ} (H : a ≤ b) (c : ℤ) : a + c ≤ b + c := subst (add_comm c b) (subst (add_comm c a) (add_le_left H c)) theorem add_le {a b c d : ℤ} (H1 : a ≤ b) (H2 : c ≤ d) : a + c ≤ b + d := le_trans (add_le_right H1 c) (add_le_left H2 b) theorem add_le_cancel_right {a b c : ℤ} (H : a + c ≤ b + c) : a ≤ b := have H2 : a + c - c ≤ b + c - c, from add_le_right H (-c), subst (add_sub_inverse b c) (subst (add_sub_inverse a c) H2) theorem add_le_cancel_left {a b c : ℤ} (H : c + a ≤ c + b) : a ≤ b := add_le_cancel_right (subst (add_comm c b) (subst (add_comm c a) H)) theorem add_le_inv {a b c d : ℤ} (H1 : a + b ≤ c + d) (H2 : c ≤ a) : b ≤ d := obtain (n : ℕ) (Hn : c + n = a), from le_elim H2, have H3 : c + (n + b) ≤ c + d, from subst (add_assoc c n b) (subst (symm Hn) H1), have H4 : n + b ≤ d, from add_le_cancel_left H3, show b ≤ d, from le_trans (le_add_of_nat_left b n) H4 theorem le_add_of_nat_right_trans {a b : ℤ} (H : a ≤ b) (n : ℕ) : a ≤ b + n := le_trans H (le_add_of_nat_right b n) theorem le_imp_succ_le_or_eq {a b : ℤ} (H : a ≤ b) : a + 1 ≤ b ∨ a = b := obtain (n : ℕ) (Hn : a + n = b), from le_elim H, discriminate (assume H2 : n = 0, have H3 : a = b, from calc a = a + 0 : symm (add_zero_right a) ... = a + n : {symm H2} ... = b : Hn, or_intro_right _ H3) (take k : ℕ, assume H2 : n = succ k, have H3 : a + 1 + k = b, from calc a + 1 + k = a + succ k : by simp ... = a + n : by simp ... = b : Hn, or_intro_left _ (le_intro H3)) -- ### interaction with neg and sub theorem le_neg {a b : ℤ} (H : a ≤ b) : -b ≤ -a := obtain (n : ℕ) (Hn : a + n = b), from le_elim H, have H2 : b - n = a, from add_imp_sub_right Hn, have H3 : -b + n = -a, from calc -b + n = -b + -(-n) : {symm (neg_neg n)} ... = -(b - n) : symm (neg_add_distr b (-n)) ... = -a : {H2}, le_intro H3 theorem neg_le_zero {a : ℤ} (H : 0 ≤ a) : -a ≤ 0 := subst neg_zero (le_neg H) theorem zero_le_neg {a : ℤ} (H : a ≤ 0) : 0 ≤ -a := subst neg_zero (le_neg H) theorem le_neg_inv {a b : ℤ} (H : -a ≤ -b) : b ≤ a := subst (neg_neg b) (subst (neg_neg a) (le_neg H)) theorem le_sub_of_nat (a : ℤ) (n : ℕ) : a - n ≤ a := le_intro (sub_add_inverse a n) theorem sub_le_right {a b : ℤ} (H : a ≤ b) (c : ℤ) : a - c ≤ b - c := add_le_right H (-c) theorem sub_le_left {a b : ℤ} (H : a ≤ b) (c : ℤ) : c - b ≤ c - a := add_le_left (le_neg H) c theorem sub_le {a b c d : ℤ} (H1 : a ≤ b) (H2 : d ≤ c) : a - c ≤ b - d := add_le H1 (le_neg H2) theorem sub_le_right_inv {a b c : ℤ} (H : a - c ≤ b - c) : a ≤ b := add_le_cancel_right H theorem sub_le_left_inv {a b c : ℤ} (H : c - a ≤ c - b) : b ≤ a := le_neg_inv (add_le_cancel_left H) -- Less than, Greater than, Greater than or equal -- ---------------------------------------------- definition lt (a b : ℤ) := a + 1 ≤ b infix `<` := int.lt definition ge (a b : ℤ) := b ≤ a infix `>=` := int.ge infix `≥` := int.ge definition gt (a b : ℤ) := b < a infix `>` := int.gt theorem lt_def (a b : ℤ) : a < b ↔ a + 1 ≤ b := iff_refl (a < b) theorem gt_def (n m : ℕ) : n > m ↔ m < n := iff_refl (n > m) theorem ge_def (n m : ℕ) : n ≥ m ↔ m ≤ n := iff_refl (n ≥ m) -- add_rewrite gt_def ge_def --it might be possible to remove this in Lean 0.2 theorem lt_add_succ (a : ℤ) (n : ℕ) : a < a + succ n := le_intro (show a + 1 + n = a + succ n, by simp) theorem lt_intro {a b : ℤ} {n : ℕ} (H : a + succ n = b) : a < b := subst H (lt_add_succ a n) theorem lt_elim {a b : ℤ} (H : a < b) : ∃n : ℕ, a + succ n = b := obtain (n : ℕ) (Hn : a + 1 + n = b), from le_elim H, have H2 : a + succ n = b, from calc a + succ n = a + 1 + n : by simp ... = b : Hn, exists_intro n H2 -- -- ### basic facts theorem lt_irrefl (a : ℤ) : ¬ a < a := not_intro (assume H : a < a, obtain (n : ℕ) (Hn : a + succ n = a), from lt_elim H, have H2 : a + succ n = a + 0, from calc a + succ n = a : Hn ... = a + 0 : by simp, have H3 : succ n = 0, from add_cancel_left H2, have H4 : succ n = 0, from of_nat_inj H3, absurd H4 (succ_ne_zero n)) theorem lt_imp_ne {a b : ℤ} (H : a < b) : a ≠ b := not_intro (assume H2 : a = b, absurd (subst H2 H) (lt_irrefl b)) theorem lt_of_nat (n m : ℕ) : (of_nat n < of_nat m) ↔ (n < m) := calc (of_nat n + 1 ≤ of_nat m) ↔ (of_nat (succ n) ≤ of_nat m) : by simp ... ↔ (succ n ≤ m) : le_of_nat (succ n) m ... ↔ (n < m) : iff_symm (eq_to_iff (nat.lt_def n m)) theorem gt_of_nat (n m : ℕ) : (of_nat n > of_nat m) ↔ (n > m) := lt_of_nat m n -- ### interaction with le theorem lt_imp_le_succ {a b : ℤ} (H : a < b) : a + 1 ≤ b := H theorem le_succ_imp_lt {a b : ℤ} (H : a + 1 ≤ b) : a < b := H theorem self_lt_succ (a : ℤ) : a < a + 1 := le_refl (a + 1) theorem lt_imp_le {a b : ℤ} (H : a < b) : a ≤ b := obtain (n : ℕ) (Hn : a + succ n = b), from lt_elim H, le_intro Hn theorem le_imp_lt_or_eq {a b : ℤ} (H : a ≤ b) : a < b ∨ a = b := le_imp_succ_le_or_eq H theorem le_ne_imp_lt {a b : ℤ} (H1 : a ≤ b) (H2 : a ≠ b) : a < b := resolve_left (le_imp_lt_or_eq H1) H2 theorem le_imp_lt_succ {a b : ℤ} (H : a ≤ b) : a < b + 1 := add_le_right H 1 theorem lt_succ_imp_le {a b : ℤ} (H : a < b + 1) : a ≤ b := add_le_cancel_right H -- ### transitivity, antisymmmetry theorem lt_le_trans {a b c : ℤ} (H1 : a < b) (H2 : b ≤ c) : a < c := le_trans H1 H2 theorem le_lt_trans {a b c : ℤ} (H1 : a ≤ b) (H2 : b < c) : a < c := le_trans (add_le_right H1 1) H2 theorem lt_trans {a b c : ℤ} (H1 : a < b) (H2 : b < c) : a < c := lt_le_trans H1 (lt_imp_le H2) theorem le_imp_not_gt {a b : ℤ} (H : a ≤ b) : ¬ a > b := not_intro (assume H2 : a > b, absurd (le_lt_trans H H2) (lt_irrefl a)) theorem lt_imp_not_ge {a b : ℤ} (H : a < b) : ¬ a ≥ b := not_intro (assume H2 : a ≥ b, absurd (lt_le_trans H H2) (lt_irrefl a)) theorem lt_antisym {a b : ℤ} (H : a < b) : ¬ b < a := le_imp_not_gt (lt_imp_le H) -- ### interaction with addition theorem add_lt_left {a b : ℤ} (H : a < b) (c : ℤ) : c + a < c + b := subst (symm (add_assoc c a 1)) (add_le_left H c) theorem add_lt_right {a b : ℤ} (H : a < b) (c : ℤ) : a + c < b + c := subst (add_comm c b) (subst (add_comm c a) (add_lt_left H c)) theorem add_le_lt {a b c d : ℤ} (H1 : a ≤ c) (H2 : b < d) : a + b < c + d := le_lt_trans (add_le_right H1 b) (add_lt_left H2 c) theorem add_lt_le {a b c d : ℤ} (H1 : a < c) (H2 : b ≤ d) : a + b < c + d := lt_le_trans (add_lt_right H1 b) (add_le_left H2 c) theorem add_lt {a b c d : ℤ} (H1 : a < c) (H2 : b < d) : a + b < c + d := add_lt_le H1 (lt_imp_le H2) theorem add_lt_cancel_left {a b c : ℤ} (H : c + a < c + b) : a < b := add_le_cancel_left (subst (add_assoc c a 1) (show c + a + 1 ≤ c + b, from H)) theorem add_lt_cancel_right {a b c : ℤ} (H : a + c < b + c) : a < b := add_lt_cancel_left (subst (add_comm b c) (subst (add_comm a c) H)) -- ### interaction with neg and sub theorem lt_neg {a b : ℤ} (H : a < b) : -b < -a := have H2 : -(a + 1) + 1 = -a, by simp, have H3 : -b ≤ -(a + 1), from le_neg H, have H4 : -b + 1 ≤ -(a + 1) + 1, from add_le_right H3 1, subst H2 H4 theorem neg_lt_zero {a : ℤ} (H : 0 < a) : -a < 0 := subst neg_zero (lt_neg H) theorem zero_lt_neg {a : ℤ} (H : a < 0) : 0 < -a := subst neg_zero (lt_neg H) theorem lt_neg_inv {a b : ℤ} (H : -a < -b) : b < a := subst (neg_neg b) (subst (neg_neg a) (lt_neg H)) theorem lt_sub_of_nat_succ (a : ℤ) (n : ℕ) : a - succ n < a := lt_intro (sub_add_inverse a (succ n)) theorem sub_lt_right {a b : ℤ} (H : a < b) (c : ℤ) : a - c < b - c := add_lt_right H (-c) theorem sub_lt_left {a b : ℤ} (H : a < b) (c : ℤ) : c - b < c - a := add_lt_left (lt_neg H) c theorem sub_lt {a b c d : ℤ} (H1 : a < b) (H2 : d < c) : a - c < b - d := add_lt H1 (lt_neg H2) theorem sub_lt_right_inv {a b c : ℤ} (H : a - c < b - c) : a < b := add_lt_cancel_right H theorem sub_lt_left_inv {a b c : ℤ} (H : c - a < c - b) : b < a := lt_neg_inv (add_lt_cancel_left H) -- ### totality of lt and le -- add_rewrite succ_pos zero_le --move some of these to nat.lean -- add_rewrite le_of_nat lt_of_nat gt_of_nat --remove gt_of_nat in Lean 0.2 -- add_rewrite le_neg lt_neg neg_le_zero zero_le_neg zero_lt_neg neg_lt_zero -- axiom sorry {P : Prop} : P theorem neg_le_pos (n m : ℕ) : -n ≤ m := have H1 : of_nat 0 ≤ of_nat m, by simp, have H2 : -n ≤ 0, by simp, le_trans H2 H1 theorem le_or_gt (a b : ℤ) : a ≤ b ∨ a > b := int_by_cases a (take n : ℕ, int_by_cases_succ b (take m : ℕ, show of_nat n ≤ m ∨ of_nat n > m, by simp) -- from (by simp) ◂ (le_or_gt n m)) (take m : ℕ, show n ≤ -succ m ∨ n > -succ m, from have H0 : -succ m < -m, from lt_neg (subst (symm (of_nat_succ m)) (self_lt_succ m)), have H : -succ m < n, from lt_le_trans H0 (neg_le_pos m n), or_intro_right _ H)) (take n : ℕ, int_by_cases_succ b (take m : ℕ, show -n ≤ m ∨ -n > m, from or_intro_left _ (neg_le_pos n m)) (take m : ℕ, show -n ≤ -succ m ∨ -n > -succ m, from or_imp_or (le_or_gt (succ m) n) (assume H : succ m ≤ n, le_neg (iff_elim_left (iff_symm (le_of_nat (succ m) n)) H)) (assume H : succ m > n, lt_neg (iff_elim_left (iff_symm (lt_of_nat n (succ m))) H)))) theorem trichotomy_alt (a b : ℤ) : (a < b ∨ a = b) ∨ a > b := or_imp_or_left (le_or_gt a b) (assume H : a ≤ b, le_imp_lt_or_eq H) theorem trichotomy (a b : ℤ) : a < b ∨ a = b ∨ a > b := iff_elim_left (or_assoc _ _ _) (trichotomy_alt a b) theorem le_total (a b : ℤ) : a ≤ b ∨ b ≤ a := or_imp_or_right (le_or_gt a b) (assume H : b < a, lt_imp_le H) theorem not_lt_imp_le {a b : ℤ} (H : ¬ a < b) : b ≤ a := resolve_left (le_or_gt b a) H theorem not_le_imp_lt {a b : ℤ} (H : ¬ a ≤ b) : b < a := resolve_right (le_or_gt a b) H -- (non)positivity and (non)negativity -- ------------------------------------- -- ### basic -- see also "int_by_cases" and similar theorems theorem pos_imp_exists_nat {a : ℤ} (H : a ≥ 0) : ∃n : ℕ, a = n := obtain (n : ℕ) (Hn : of_nat 0 + n = a), from le_elim H, exists_intro n (trans (symm Hn) (add_zero_left n)) theorem neg_imp_exists_nat {a : ℤ} (H : a ≤ 0) : ∃n : ℕ, a = -n := have H2 : -a ≥ 0, from zero_le_neg H, obtain (n : ℕ) (Hn : -a = n), from pos_imp_exists_nat H2, have H3 : a = -n, from symm (neg_move Hn), exists_intro n H3 theorem abs_pos {a : ℤ} (H : a ≥ 0) : (to_nat a) = a := obtain (n : ℕ) (Hn : a = n), from pos_imp_exists_nat H, subst (symm Hn) (congr_arg of_nat (to_nat_of_nat n)) --abs_neg is already taken... rename? theorem abs_negative {a : ℤ} (H : a ≤ 0) : (to_nat a) = -a := obtain (n : ℕ) (Hn : a = -n), from neg_imp_exists_nat H, calc (to_nat a) = (to_nat ( -n)) : {Hn} ... = (to_nat n) : {abs_neg n} ... = n : {to_nat_of_nat n} ... = -a : symm (neg_move (symm Hn)) theorem abs_cases (a : ℤ) : a = (to_nat a) ∨ a = - (to_nat a) := or_imp_or (le_total 0 a) (assume H : a ≥ 0, symm (abs_pos H)) (assume H : a ≤ 0, symm (neg_move (symm (abs_negative H)))) -- ### interaction of mul with le and lt theorem mul_le_left_nonneg {a b c : ℤ} (Ha : a ≥ 0) (H : b ≤ c) : a * b ≤ a * c := obtain (n : ℕ) (Hn : b + n = c), from le_elim H, have H2 : a * b + of_nat ((to_nat a) * n) = a * c, from calc a * b + of_nat ((to_nat a) * n) = a * b + (to_nat a) * of_nat n : by simp ... = a * b + a * n : {abs_pos Ha} ... = a * (b + n) : by simp ... = a * c : by simp, le_intro H2 theorem mul_le_right_nonneg {a b c : ℤ} (Hb : b ≥ 0) (H : a ≤ c) : a * b ≤ c * b := subst (mul_comm b c) (subst (mul_comm b a) (mul_le_left_nonneg Hb H)) theorem mul_le_left_nonpos {a b c : ℤ} (Ha : a ≤ 0) (H : b ≤ c) : a * c ≤ a * b := have H2 : -a * b ≤ -a * c, from mul_le_left_nonneg (zero_le_neg Ha) H, have H3 : -(a * b) ≤ -(a * c), from subst (mul_neg_left a c) (subst (mul_neg_left a b) H2), le_neg_inv H3 theorem mul_le_right_nonpos {a b c : ℤ} (Hb : b ≤ 0) (H : c ≤ a) : a * b ≤ c * b := subst (mul_comm b c) (subst (mul_comm b a) (mul_le_left_nonpos Hb H)) ---this theorem can be made more general by replacing either Ha with 0 ≤ a or Hb with 0 ≤ d... theorem mul_le_nonneg {a b c d : ℤ} (Ha : a ≥ 0) (Hb : b ≥ 0) (Hc : a ≤ c) (Hd : b ≤ d) : a * b ≤ c * d := le_trans (mul_le_right_nonneg Hb Hc) (mul_le_left_nonneg (le_trans Ha Hc) Hd) theorem mul_le_nonpos {a b c d : ℤ} (Ha : a ≤ 0) (Hb : b ≤ 0) (Hc : c ≤ a) (Hd : d ≤ b) : a * b ≤ c * d := le_trans (mul_le_right_nonpos Hb Hc) (mul_le_left_nonpos (le_trans Hc Ha) Hd) theorem mul_lt_left_pos {a b c : ℤ} (Ha : a > 0) (H : b < c) : a * b < a * c := have H2 : a * b < a * b + a, from subst (add_zero_right (a * b)) (add_lt_left Ha (a * b)), have H3 : a * b + a ≤ a * c, from subst (by simp) (mul_le_left_nonneg (lt_imp_le Ha) H), lt_le_trans H2 H3 theorem mul_lt_right_pos {a b c : ℤ} (Hb : b > 0) (H : a < c) : a * b < c * b := subst (mul_comm b c) (subst (mul_comm b a) (mul_lt_left_pos Hb H)) theorem mul_lt_left_neg {a b c : ℤ} (Ha : a < 0) (H : b < c) : a * c < a * b := have H2 : -a * b < -a * c, from mul_lt_left_pos (zero_lt_neg Ha) H, have H3 : -(a * b) < -(a * c), from subst (mul_neg_left a c) (subst (mul_neg_left a b) H2), lt_neg_inv H3 theorem mul_lt_right_neg {a b c : ℤ} (Hb : b < 0) (H : c < a) : a * b < c * b := subst (mul_comm b c) (subst (mul_comm b a) (mul_lt_left_neg Hb H)) theorem mul_le_lt_pos {a b c d : ℤ} (Ha : a > 0) (Hb : b ≥ 0) (Hc : a ≤ c) (Hd : b < d) : a * b < c * d := le_lt_trans (mul_le_right_nonneg Hb Hc) (mul_lt_left_pos (lt_le_trans Ha Hc) Hd) theorem mul_lt_le_pos {a b c d : ℤ} (Ha : a ≥ 0) (Hb : b > 0) (Hc : a < c) (Hd : b ≤ d) : a * b < c * d := lt_le_trans (mul_lt_right_pos Hb Hc) (mul_le_left_nonneg (le_trans Ha (lt_imp_le Hc)) Hd) theorem mul_lt_pos {a b c d : ℤ} (Ha : a > 0) (Hb : b > 0) (Hc : a < c) (Hd : b < d) : a * b < c * d := mul_lt_le_pos (lt_imp_le Ha) Hb Hc (lt_imp_le Hd) theorem mul_lt_neg {a b c d : ℤ} (Ha : a < 0) (Hb : b < 0) (Hc : c < a) (Hd : d < b) : a * b < c * d := lt_trans (mul_lt_right_neg Hb Hc) (mul_lt_left_neg (lt_trans Hc Ha) Hd) -- theorem mul_le_lt_neg and mul_lt_le_neg? theorem mul_lt_cancel_left_nonneg {a b c : ℤ} (Hc : c ≥ 0) (H : c * a < c * b) : a < b := or_elim (le_or_gt b a) (assume H2 : b ≤ a, have H3 : c * b ≤ c * a, from mul_le_left_nonneg Hc H2, absurd_elim _ H3 (lt_imp_not_ge H)) (assume H2 : a < b, H2) theorem mul_lt_cancel_right_nonneg {a b c : ℤ} (Hc : c ≥ 0) (H : a * c < b * c) : a < b := mul_lt_cancel_left_nonneg Hc (subst (mul_comm b c) (subst (mul_comm a c) H)) theorem mul_lt_cancel_left_nonpos {a b c : ℤ} (Hc : c ≤ 0) (H : c * b < c * a) : a < b := have H2 : -(c * a) < -(c * b), from lt_neg H, have H3 : -c * a < -c * b, from subst (symm (mul_neg_left c b)) (subst (symm (mul_neg_left c a)) H2), have H4 : -c ≥ 0, from zero_le_neg Hc, mul_lt_cancel_left_nonneg H4 H3 theorem mul_lt_cancel_right_nonpos {a b c : ℤ} (Hc : c ≤ 0) (H : b * c < a * c) : a < b := mul_lt_cancel_left_nonpos Hc (subst (mul_comm b c) (subst (mul_comm a c) H)) theorem mul_le_cancel_left_pos {a b c : ℤ} (Hc : c > 0) (H : c * a ≤ c * b) : a ≤ b := or_elim (le_or_gt a b) (assume H2 : a ≤ b, H2) (assume H2 : a > b, have H3 : c * a > c * b, from mul_lt_left_pos Hc H2, absurd_elim _ H3 (le_imp_not_gt H)) theorem mul_le_cancel_right_pos {a b c : ℤ} (Hc : c > 0) (H : a * c ≤ b * c) : a ≤ b := mul_le_cancel_left_pos Hc (subst (mul_comm b c) (subst (mul_comm a c) H)) theorem mul_le_cancel_left_neg {a b c : ℤ} (Hc : c < 0) (H : c * b ≤ c * a) : a ≤ b := have H2 : -(c * a) ≤ -(c * b), from le_neg H, have H3 : -c * a ≤ -c * b, from subst (symm (mul_neg_left c b)) (subst (symm (mul_neg_left c a)) H2), have H4 : -c > 0, from zero_lt_neg Hc, mul_le_cancel_left_pos H4 H3 theorem mul_le_cancel_right_neg {a b c : ℤ} (Hc : c < 0) (H : b * c ≤ a * c) : a ≤ b := mul_le_cancel_left_neg Hc (subst (mul_comm b c) (subst (mul_comm a c) H)) theorem mul_eq_one_left {a b : ℤ} (H : a * b = 1) : a = 1 ∨ a = - 1 := have H2 : (to_nat a) * (to_nat b) = 1, from calc (to_nat a) * (to_nat b) = (to_nat (a * b)) : symm (mul_to_nat a b) ... = (to_nat 1) : {H} ... = 1 : to_nat_of_nat 1, have H3 : (to_nat a) = 1, from mul_eq_one_left H2, or_imp_or (abs_cases a) (assume H4 : a = (to_nat a), subst H3 H4) (assume H4 : a = - (to_nat a), subst H3 H4) theorem mul_eq_one_right {a b : ℤ} (H : a * b = 1) : b = 1 ∨ b = - 1 := mul_eq_one_left (subst (mul_comm a b) H) -- sign function -- ------------- definition sign (a : ℤ) : ℤ := if a > 0 then 1 else (if a < 0 then - 1 else 0) -- TODO: for kernel theorem or_elim3 {a b c d : Prop} (H : a ∨ b ∨ c) (Ha : a → d) (Hb : b → d) (Hc : c → d) : d := or_elim H Ha (assume H2,or_elim H2 Hb Hc) theorem sign_pos {a : ℤ} (H : a > 0) : sign a = 1 := if_pos H _ _ theorem sign_negative {a : ℤ} (H : a < 0) : sign a = - 1 := trans (if_neg (lt_antisym H) _ _) (if_pos H _ _) theorem sign_zero : sign 0 = 0 := trans (if_neg (lt_irrefl 0) _ _) (if_neg (lt_irrefl 0) _ _) -- add_rewrite sign_negative sign_pos abs_negative abs_pos sign_zero mul_abs theorem mul_sign_to_nat (a : ℤ) : sign a * (to_nat a) = a := have temp1 : ∀a : ℤ, a < 0 → a ≤ 0, from take a, lt_imp_le, have temp2 : ∀a : ℤ, a > 0 → a ≥ 0, from take a, lt_imp_le, or_elim3 (trichotomy a 0) (assume H : a < 0, by simp) (assume H : a = 0, by simp) (assume H : a > 0, by simp) -- TODO: show decidable for equality (and avoid classical library) theorem sign_mul (a b : ℤ) : sign (a * b) = sign a * sign b := or_elim (em (a = 0)) (assume Ha : a = 0, by simp) (assume Ha : a ≠ 0, or_elim (em (b = 0)) (assume Hb : b = 0, by simp) (assume Hb : b ≠ 0, have H : sign (a * b) * (to_nat (a * b)) = sign a * sign b * (to_nat (a * b)), from calc sign (a * b) * (to_nat (a * b)) = a * b : mul_sign_to_nat (a * b) ... = sign a * (to_nat a) * b : {symm (mul_sign_to_nat a)} ... = sign a * (to_nat a) * (sign b * (to_nat b)) : {symm (mul_sign_to_nat b)} ... = sign a * sign b * (to_nat (a * b)) : by simp, have H2 : (to_nat (a * b)) ≠ 0, from take H2', mul_ne_zero Ha Hb (abs_eq_zero H2'), have H3 : (to_nat (a * b)) ≠ of_nat 0, from contrapos of_nat_inj H2, mul_cancel_right H3 H)) --set_option pp::coercion true theorem sign_idempotent (a : ℤ) : sign (sign a) = sign a := have temp : of_nat 1 > 0, from iff_elim_left (iff_symm (lt_of_nat 0 1)) (succ_pos 0), --this should be done with simp or_elim3 (trichotomy a 0) sorry sorry sorry -- (by simp) -- (by simp) -- (by simp) theorem sign_succ (n : ℕ) : sign (succ n) = 1 := sign_pos (iff_elim_left (iff_symm (lt_of_nat 0 (succ n))) (succ_pos n)) --this should be done with simp theorem sign_neg (a : ℤ) : sign (-a) = - sign a := have temp1 : a > 0 → -a < 0, from neg_lt_zero, have temp2 : a < 0 → -a > 0, from zero_lt_neg, or_elim3 (trichotomy a 0) sorry sorry sorry -- (by simp) -- (by simp) -- (by simp) -- add_rewrite sign_neg theorem abs_sign_ne_zero {a : ℤ} (H : a ≠ 0) : (to_nat (sign a)) = 1 := or_elim3 (trichotomy a 0) sorry -- (by simp) (assume H2 : a = 0, absurd_elim _ H2 H) sorry -- (by simp) theorem sign_to_nat (a : ℤ) : sign (to_nat a) = to_nat (sign a) := have temp1 : ∀a : ℤ, a < 0 → a ≤ 0, from take a, lt_imp_le, have temp2 : ∀a : ℤ, a > 0 → a ≥ 0, from take a, lt_imp_le, or_elim3 (trichotomy a 0) sorry sorry sorry -- (by simp) -- (by simp) -- (by simp) -- set_opaque rel true -- set_opaque rep true -- set_opaque of_nat true -- set_opaque to_nat true -- set_opaque neg true -- set_opaque add true -- set_opaque mul true -- set_opaque le true -- set_opaque lt true -- set_opaque sign true --transparent: sub ge gt end int -- namespace int