/- Copyright (c) 2015 Microsoft Corporation. All rights reserved. Released under Apache 2.0 license as described in the file LICENSE. Authors: Leonardo de Moura In the standard library we cannot assume the univalence axiom. We say two types are equivalent if they are isomorphic. Two equivalent types have the same cardinality. -/ import data.sum data.nat open function structure equiv [class] (A B : Type) := (to_fun : A → B) (inv : B → A) (left_inv : left_inverse inv to_fun) (right_inv : right_inverse inv to_fun) namespace equiv infix `≃`:50 := equiv namespace ops attribute equiv.to_fun [coercion] definition inverse [reducible] {A B : Type} [h : A ≃ B] : B → A := λ b, @equiv.inv A B h b postfix `⁻¹` := inverse end ops protected theorem refl [refl] (A : Type) : A ≃ A := mk (@id A) (@id A) (λ x, rfl) (λ x, rfl) protected theorem symm [symm] {A B : Type} : A ≃ B → B ≃ A | (mk f g h₁ h₂) := mk g f h₂ h₁ protected theorem trans [trans] {A B C : Type} : A ≃ B → B ≃ C → A ≃ C | (mk f₁ g₁ l₁ r₁) (mk f₂ g₂ l₂ r₂) := mk (f₂ ∘ f₁) (g₁ ∘ g₂) (show ∀ x, g₁ (g₂ (f₂ (f₁ x))) = x, by intros; rewrite [l₂, l₁]) (show ∀ x, f₂ (f₁ (g₁ (g₂ x))) = x, by intros; rewrite [r₁, r₂]) lemma false_equiv_empty : empty ≃ false := mk (λ e, empty.rec _ e) (λ h, false.rec _ h) (λ e, empty.rec _ e) (λ h, false.rec _ h) lemma arrow_congr [congr] {A₁ B₁ A₂ B₂ : Type} : A₁ ≃ A₂ → B₁ ≃ B₂ → (A₁ → B₁) ≃ (A₂ → B₂) | (mk f₁ g₁ l₁ r₁) (mk f₂ g₂ l₂ r₂) := mk (λ (h : A₁ → B₁) (a : A₂), f₂ (h (g₁ a))) (λ (h : A₂ → B₂) (a : A₁), g₂ (h (f₁ a))) (λ h, funext (λ a, by rewrite [l₁, l₂])) (λ h, funext (λ a, by rewrite [r₁, r₂])) section open unit lemma arrow_unit_equiv_unit [simp] (A : Type) : (A → unit) ≃ unit := mk (λ f, star) (λ u, (λ f, star)) (λ f, funext (λ x, by cases (f x); reflexivity)) (λ u, by cases u; reflexivity) lemma unit_arrow_equiv [simp] (A : Type) : (unit → A) ≃ A := mk (λ f, f star) (λ a, (λ u, a)) (λ f, funext (λ x, by cases x; reflexivity)) (λ u, rfl) lemma empty_arrow_equiv_unit [simp] (A : Type) : (empty → A) ≃ unit := mk (λ f, star) (λ u, λ e, empty.rec _ e) (λ f, funext (λ x, empty.rec _ x)) (λ u, by cases u; reflexivity) lemma false_arrow_equiv_unit [simp] (A : Type) : (false → A) ≃ unit := calc (false → A) ≃ (empty → A) : arrow_congr false_equiv_empty !equiv.refl ... ≃ unit : empty_arrow_equiv_unit end lemma prod_congr [congr] {A₁ B₁ A₂ B₂ : Type} : A₁ ≃ A₂ → B₁ ≃ B₂ → (A₁ × B₁) ≃ (A₂ × B₂) | (mk f₁ g₁ l₁ r₁) (mk f₂ g₂ l₂ r₂) := mk (λ p, match p with (a₁, b₁) := (f₁ a₁, f₂ b₁) end) (λ p, match p with (a₂, b₂) := (g₁ a₂, g₂ b₂) end) (λ p, begin cases p, esimp, rewrite [l₁, l₂] end) (λ p, begin cases p, esimp, rewrite [r₁, r₂] end) lemma prod_comm [simp] (A B : Type) : (A × B) ≃ (B × A) := mk (λ p, match p with (a, b) := (b, a) end) (λ p, match p with (b, a) := (a, b) end) (λ p, begin cases p, esimp end) (λ p, begin cases p, esimp end) lemma prod_assoc [simp] (A B C : Type) : ((A × B) × C) ≃ (A × (B × C)) := mk (λ t, match t with ((a, b), c) := (a, (b, c)) end) (λ t, match t with (a, (b, c)) := ((a, b), c) end) (λ t, begin cases t with ab c, cases ab, esimp end) (λ t, begin cases t with a bc, cases bc, esimp end) section open unit prod.ops lemma prod_unit_right [simp] (A : Type) : (A × unit) ≃ A := mk (λ p, p.1) (λ a, (a, star)) (λ p, begin cases p with a u, cases u, esimp end) (λ a, rfl) lemma prod_unit_left [simp] (A : Type) : (unit × A) ≃ A := calc (unit × A) ≃ (A × unit) : prod_comm ... ≃ A : prod_unit_right lemma prod_empty_right [simp] (A : Type) : (A × empty) ≃ empty := mk (λ p, empty.rec _ p.2) (λ e, empty.rec _ e) (λ p, empty.rec _ p.2) (λ e, empty.rec _ e) lemma prod_empty_left [simp] (A : Type) : (empty × A) ≃ empty := calc (empty × A) ≃ (A × empty) : prod_comm ... ≃ empty : prod_empty_right end section open sum lemma sum_congr [congr] {A₁ B₁ A₂ B₂ : Type} : A₁ ≃ A₂ → B₁ ≃ B₂ → (A₁ + B₁) ≃ (A₂ + B₂) | (mk f₁ g₁ l₁ r₁) (mk f₂ g₂ l₂ r₂) := mk (λ s, match s with inl a₁ := inl (f₁ a₁) | inr b₁ := inr (f₂ b₁) end) (λ s, match s with inl a₂ := inl (g₁ a₂) | inr b₂ := inr (g₂ b₂) end) (λ s, begin cases s, {esimp, rewrite l₁}, {esimp, rewrite l₂} end) (λ s, begin cases s, {esimp, rewrite r₁}, {esimp, rewrite r₂} end) open bool unit lemma bool_equiv_unit_sum_unit : bool ≃ (unit + unit) := mk (λ b, match b with tt := inl star | ff := inr star end) (λ s, match s with inl star := tt | inr star := ff end) (λ b, begin cases b, esimp, esimp end) (λ s, begin cases s with u u, {cases u, esimp}, {cases u, esimp} end) lemma sum_comm [simp] (A B : Type) : (A + B) ≃ (B + A) := mk (λ s, match s with inl a := inr a | inr b := inl b end) (λ s, match s with inl b := inr b | inr a := inl a end) (λ s, begin cases s, esimp, esimp end) (λ s, begin cases s, esimp, esimp end) lemma sum_assoc [simp] (A B C : Type) : ((A + B) + C) ≃ (A + (B + C)) := mk (λ s, match s with inl (inl a) := inl a | inl (inr b) := inr (inl b) | inr c := inr (inr c) end) (λ s, match s with inl a := inl (inl a) | inr (inl b) := inl (inr b) | inr (inr c) := inr c end) (λ s, begin cases s with ab c, cases ab, repeat esimp end) (λ s, begin cases s with a bc, esimp, cases bc, repeat esimp end) lemma sum_empty_right [simp] (A : Type) : (A + empty) ≃ A := mk (λ s, match s with inl a := a | inr e := empty.rec _ e end) (λ a, inl a) (λ s, begin cases s with a e, esimp, exact empty.rec _ e end) (λ a, rfl) lemma sum_empty_left [simp] (A : Type) : (empty + A) ≃ A := calc (empty + A) ≃ (A + empty) : sum_comm ... ≃ A : sum_empty_right end section open prod.ops lemma arrow_prod_equiv_prod_arrow (A B C : Type) : (C → A × B) ≃ ((C → A) × (C → B)) := mk (λ f, (λ c, (f c).1, λ c, (f c).2)) (λ p, λ c, (p.1 c, p.2 c)) (λ f, funext (λ c, begin esimp, cases f c, esimp end)) (λ p, begin cases p, esimp end) lemma arrow_arrow_equiv_prod_arrow (A B C : Type) : (A → B → C) ≃ (A × B → C) := mk (λ f, λ p, f p.1 p.2) (λ f, λ a b, f (a, b)) (λ f, rfl) (λ f, funext (λ p, begin cases p, esimp end)) open sum lemma sum_arrow_equiv_prod_arrow (A B C : Type) : ((A + B) → C) ≃ ((A → C) × (B → C)) := mk (λ f, (λ a, f (inl a), λ b, f (inr b))) (λ p, (λ s, match s with inl a := p.1 a | inr b := p.2 b end)) (λ f, funext (λ s, begin cases s, esimp, esimp end)) (λ p, begin cases p, esimp end) lemma sum_prod_distrib (A B C : Type) : ((A + B) × C) ≃ ((A × C) + (B × C)) := mk (λ p, match p with (inl a, c) := inl (a, c) | (inr b, c) := inr (b, c) end) (λ s, match s with inl (a, c) := (inl a, c) | inr (b, c) := (inr b, c) end) (λ p, begin cases p with ab c, cases ab, repeat esimp end) (λ s, begin cases s with ac bc, cases ac, esimp, cases bc, esimp end) lemma prod_sum_distrib (A B C : Type) : (A × (B + C)) ≃ ((A × B) + (A × C)) := calc (A × (B + C)) ≃ ((B + C) × A) : prod_comm ... ≃ ((B × A) + (C × A)) : sum_prod_distrib ... ≃ ((A × B) + (A × C)) : sum_congr !prod_comm !prod_comm lemma bool_prod_equiv_sum (A : Type) : (bool × A) ≃ (A + A) := calc (bool × A) ≃ ((unit + unit) × A) : prod_congr bool_equiv_unit_sum_unit !equiv.refl ... ≃ (A × (unit + unit)) : prod_comm ... ≃ ((A × unit) + (A × unit)) : prod_sum_distrib ... ≃ (A + A) : sum_congr !prod_unit_right !prod_unit_right end section open sum nat unit prod.ops lemma nat_equiv_nat_sum_unit : nat ≃ (nat + unit) := mk (λ n, match n with zero := inr star | succ a := inl a end) (λ s, match s with inl n := succ n | inr star := zero end) (λ n, begin cases n, repeat esimp end) (λ s, begin cases s with a u, esimp, {cases u, esimp} end) lemma nat_sum_unit_equiv_nat [simp] : (nat + unit) ≃ nat := equiv.symm nat_equiv_nat_sum_unit lemma nat_prod_nat_equiv_nat [simp] : (nat × nat) ≃ nat := mk (λ p, mkpair p.1 p.2) (λ n, unpair n) (λ p, begin cases p, apply unpair_mkpair end) (λ n, mkpair_unpair n) lemma nat_sum_bool_equiv_nat [simp] : (nat + bool) ≃ nat := calc (nat + bool) ≃ (nat + (unit + unit)) : sum_congr !equiv.refl bool_equiv_unit_sum_unit ... ≃ ((nat + unit) + unit) : sum_assoc ... ≃ (nat + unit) : sum_congr nat_sum_unit_equiv_nat !equiv.refl ... ≃ nat : nat_sum_unit_equiv_nat open decidable lemma nat_sum_nat_equiv_nat [simp] : (nat + nat) ≃ nat := mk (λ s, match s with inl n := 2*n | inr n := 2*n+1 end) (λ n, if even n then inl (n div 2) else inr ((n - 1) div 2)) (λ s, begin have two_gt_0 : 2 > zero, from dec_trivial, cases s, {esimp, rewrite [if_pos (even_two_mul _), mul_div_cancel_left _ two_gt_0]}, {esimp, rewrite [if_neg (not_even_two_mul_plus_one _), add_sub_cancel, mul_div_cancel_left _ two_gt_0]} end) (λ n, by_cases (λ h : even n, begin rewrite [if_pos h], esimp, rewrite [mul_div_cancel' (dvd_of_even h)] end) (λ h : ¬ even n, begin rewrite [if_neg h], esimp, cases n, {exact absurd even_zero h}, {rewrite [-add_one, add_sub_cancel, mul_div_cancel' (dvd_of_even (even_of_odd_succ (odd_of_not_even h)))]} end)) lemma prod_equiv_of_equiv_nat {A : Type} : A ≃ nat → (A × A) ≃ A := take e, calc (A × A) ≃ (nat × nat) : prod_congr e e ... ≃ nat : nat_prod_nat_equiv_nat ... ≃ A : equiv.symm e end section open decidable definition decidable_eq_of_equiv {A B : Type} [h : decidable_eq A] : A ≃ B → decidable_eq B | (mk f g l r) := take b₁ b₂, match h (g b₁) (g b₂) with | inl he := inl (assert aux : f (g b₁) = f (g b₂), from congr_arg f he, begin rewrite *r at aux, exact aux end) | inr hn := inr (λ b₁eqb₂, by subst b₁eqb₂; exact absurd rfl hn) end end definition inhabited_of_equiv {A B : Type} [h : inhabited A] : A ≃ B → inhabited B | (mk f g l r) := inhabited.mk (f (inhabited.value h)) section open subtype override equiv.ops definition subtype_equiv_of_subtype {A B : Type} {p : A → Prop} : A ≃ B → {a : A | p a} ≃ {b : B | p (b⁻¹)} | (mk f g l r) := mk (λ s, match s with tag v h := tag (f v) (eq.rec_on (eq.symm (l v)) h) end) (λ s, match s with tag v h := tag (g v) (eq.rec_on (eq.symm (r v)) h) end) (λ s, begin cases s, esimp, congruence, rewrite l, reflexivity end) (λ s, begin cases s, esimp, congruence, rewrite r, reflexivity end) end end equiv